Active Block 1/O Scheduling System (ABISS)

Benno van den Brink
benno.van.den.brink@philips.com

Werner Almesberger
werner@almesberger.net

August 12, 2004

Abstract

The Active Block I/O Scheduling System
(ABISS) is an extension of the hard-disk stor-
age subsystem of Linux, whose main purpose is
to provide a guaranteed reading and writing bit
rate to applications.

1 Introduction

The availability of inexpensive mainstream IDE
Hard Disk Drives (HDD) has allowed the use
of these disk drives in home and mobile audio-
visual (A/V) applications. This fast-increasing
storage capacity has created a new class of de-
vices like HDD video recorders, personal audio
players etc. Because the number of streams that
has to be read or written to disk is usually lim-
ited to one or two, streaming from and to a hard
disk is currently not an issue in these devices.

Currently a clear trend is visible in which
CE devices will become interconnected through
home networks in the near future. Devices like
these will need to be able to serve multiple data
streams, while providing a ’soft real-time’ ser-
vice. This sharing should be efficient because
- even more than e.g. in the traditional PC
environment - CE devices often have to meet
other constraints like low power consumption,
noise-free operation, minimum hardware cost,
etc. Resource sharing can be accomplished by
either making the applications aware of each
other, or by making the system aware of the
applications.

In this paper we will present the results of
work done on the hard-disk storage subsystem
of Linux, resulting in the Active Block I/0O
Scheduling System (ABISS). The main purpose
of ABISS is to make the system application-
aware by either providing a guaranteed reading
and writing bit rate to any application that asks
for it or denying access when the system is fully
committed. Apart from these guaranteed real-

time (RT) streams, our solution also provides
priorities for best-effort (BE) disk traffic.

The system consists of a framework that is
included in the kernel, with a policy and coor-
dination unit implemented in user space. This
approach ensures separation between the kernel
infrastructure (the framework) and the policies
(e.g. admission control) in user space.

The kernel part consists of our own elevator
and a new 'read scheduler’, communicating with
a user-space daemon. The elevator implements
the multiple priorities of the streams and the
read scheduler is responsible for timely preload-
ing and buffering of data. Apart from the ele-
vator and read scheduler, some minor modifica-
tions were made to file system drivers.

ABISS works from similar premises as RTFS
[1], but puts less emphasis on tight control of
low-level operations, and more on convergence
with current Linux kernel development.

In section 2 we will give an overview of the
system, in section 3 the implementation is de-
scribed in more detail. Some measurements will
be presented in section 4.

The ABISS project is hosted at http://
abiss.sourceforge.net/

2 Overall architecture

In this section, we describe the role of the in-
dividual components that make up the ABISS
system, and how they interact.

Figure 1 shows the data path when read-
ing from disk: the application issues requests
to VFS, which translates them to requests for
the disk blocks that comprise the correspond-
ing data pages.! The block 10 subsystem then
queues these requests, and feeds them to the de-
vice driver, which retrieves the data from disk.

1. When using the term “request” in this paper, we
usually refer to such a block IO request. The kernel
data structure describing such a request is aptly named
struct request.

ABISS daemo Application

A

User space Service setu ‘ File 10
Kernel %
Control mﬁ
([amiss) ;!

’ Page/buffer cach%

Prefetch

[Fomuest etk

Device driver

Figure 1: The ABISS real-time service enhances reg-
ular file 10 by prefetching data such that the appli-
cation never has to wait for disk accesses.

O Subsystem

[Data structure
—= Read request
— Read data

—= Control data flow

When an application requests a real-time
service (see below) from ABISS, the so-called
scheduler component of ABISS prefetches data
into the page cache such that it will already be
in memory when the application reads it.

ABISS consists of a generic framework and
modules that implement specific services. The
kernel part is assisted by a user-space daemon,
which oversees system-wide resource use, and
makes policy decisions. In this paper, we only
discuss the real-time service available in the de-
fault configuration. In the future, other services
may be added.

2.1 Application and service model

With ABISS, an application can specify for each
open file? in qualitative and quantitative terms
how it expects accesses to be handled. This
description defines how the application will be-
have, and what service it expects from the oper-
ating system. ABISS then decides whether sys-
tem resources allow it to provide this service,
and whether the application is entitled to it. If
yes, ABISS makes the necessary arrangements,
and indicates to the application that the service
is available.

The application then accesses the file in ac-
cordance with the profile it has specified in its
request, and receives the agreed upon service in
return. While doing so, the application may give

ABISS indications of this use, e.g. by informing
it about the current position in the file.

When the application closes the file, the ser-
vice is automatically terminated. The usual
rules for sharing of open files apply, e.g. if an ap-
plication forks, the same service is used jointly
by both processes then sharing the file.

2.2 Service definition

In the rest of this paper, we will focus on the
guaranteed real-time service. This service only
applies to reading.

From the application’s point of view, the real-
time service is characterized by a rate (r) and a
buffer size (b). The application sets the playout
point to mark the location after which it per-
forms accesses. As long as the playout point
moves at rate r or less, accesses to up to b bytes
after the playout point will be served from mem-
ory. If the application moves the playout point
faster, the range shrinks according to the excess
rate, and grows again towards b if the applica-
tion slows down.

For a formal definition, if we consider reading
a file as a sequence of n single-byte accesses, with
the i-th access at location a;, at time ¢;, and with
the playout point set to p;, the operating system
then guarantees that all accesses are served from
memory, as long as the following conditions are
met for all ¢,7 in 1,...,n with ¢; < ;:

Pi < pj <pi+b+7'(t]' —ti)
pj < aj <b+min(pj,p; +r(t; —t;))

The infrastructure can also be used to im-
plement a prioritized best-effort service without
guarantees. Such a service would ensure that, on
average and when measured over a sufficiently
long interval, a reader that has always at least
one request pending, will experience better la-
tency and throughput, than any reader using a
lower priority.

2.3 API

ABISS does not require any changes in the way
applications read and write files. Also memory-
mapped file access is fully supported.

However, in some cases, the ABISS scheduler
(see below) needs further help from the appli-

2. We use the term “open file” to refer to what POSIX
[2] calls an “open file description”, i.e. the object a file
descriptor points to. For one file (represented in the
kernel by struct inode), there can be many open files
(represented by struct file).

cation. For example, when reading a file, par-
ticularly if memory-mapped, the kernel cannot
reliably determine the exact location of the ap-
plication’s playout point.> Therefore, the appli-
cation needs to explicitly send this information.

Applications use ioctls for all ABISS-related
communication. For convenience, there is also a
library of wrapper functions, providing a higher-
level interface.

2.4 User-space daemon

When an application requests a service from
ABISS, the request is examined and refined in
several steps. This is shown in figure 2. First,
the request is checked for formal validity. For ex-
ample, it may specify a service that is different
from what has been configured on the file sys-
tem in question, or the set of parameters may
be incomplete. Most of these problems are de-
tected by the general framework of ABISS in the
kernel, even before calling the scheduler.

System-wide resource management and pol

\

Service request

f ABISS frameyvork W
Schedulér/ J

.

General consistency check
and scheduler selection

Sets up internal data structure
returns response to applicatio

Admission control. May modify requests.

Figure 2: When processing a service request, the ker-
nel delegates the admission control decision to the
ABISS user-space daemon.

Then, the request is sent to the ABISS dae-
mon. This daemon keeps track of system-wide
resource utilization, and decides whether the
system is capable of providing the requested ad-
ditional service. This decision can also include
policy, such as quotas assigned to individual
users, and other access control considerations.*

The ABISS daemon can also modify the re-
quest and add new parameters. The request is
then passed back to the kernel, and — if it was
accepted — used by the scheduler to actually im-
plement the corresponding service.

Communication between the ABISS daemon
and the kernel is message-based, and uses a mis-
cellaneous device.

2.5 Scheduler

The scheduler implements the time-related as-
pects of a service, and defines its properties. It
is assisted by the user-space daemon described
above.

Schedulers are modules in the ABISS sys-
tem, and can be configured individually for each
mounted file system. Fach scheduler module
may also implement several different services or
operating modes. In the rest of this paper, we
will focus on the “test” scheduler, which imple-
ments the real-time and prioritized best-effort
services described in section 2.2.

When using the real-time service, the sched-
uler prefetches pages of the file the application is
reading. This is similar to the read-ahead func-
tionality the kernel normally provides, but uses
the buffering requirements the application spec-
ified to prefetch pages such that the application
will never try to read a page that has not been
prefetched yet. Furthermore, the scheduler as-
signs a high priority to its read requests, so that
the time until a page is read from disk becomes
predictable. Priorities are implemented by the
elevator, which is described below.

The scheduler limits the rate at which the ap-
plication can read data at real-time priority to
the rate the application specified when request-
ing the real-time service.

2.6 Playout buffer

When an application reads data from a file, this
data is normally buffered in kernel space, and
then transferred to user space as needed. The
kernel also tries to read data ahead of time, so
that the application does not have to wait for the
actual disk access. Data is normally prefetched
in multiples of one memory page (a page has
typically a size of 4 kB).

For real-time reads, ABISS builds upon this
concept, and prefetches data according to the
rate at which the application will read it. This
is illustrated in figure 3. Pages are still kept in
the page cache, but in addition to this, they are

3. The playout point is the file location from which the
application is currently reading. We discuss the playout
point in more detail in section 3.2.

4. At the time of writing, policy is not yet imple-
mented.

Application

Application reads or maps pages
" in the playout buffer

Playout buffer
moves over
the file

’ Playout buffer

Kernel preloads pages from disk

Figure 3: The kernel prefetches pages into the play-
out buffer, such that they are in memory when the
applications retrieves them.

locked in memory while they are in the playout
buffer.

Besides the data rate, ABISS also takes into
account buffering requirements of application
and kernel. The data rate is specified by the ap-
plication when requesting the real-time service.
The application also specifies its own buffering
requirements, for which it has to take into ac-
count the following factors:

e The amount of data the application will re-
trieve or access at once.

e The amount of time the application may be
ahead or behind of the specified rate. This
may be due to the way that the application
is designed, but it may also be due to delays
inflicted by the operating system.

e Any deviation from a sequential access pat-
tern.

There are also various operating system and
hardware properties that need to be taken into
account when dimensioning the playout buffer.
Their handling is transparent to the application,
and explained in section 3.2.

2.7 Elevator

The elevator® orders disk IO requests in a way
that minimizes movements of the disk drive
head, and that also tries to ensure that no appli-
cation monopolizes disk accesses. Linux allows
configuration of the elevator at boot time, and,
as an extension [3], also at run time.

ABISS has its own elevator that implements
eight distinct priorities, as shown in figure 4.
Requests at a lower priority are only served if
there are no requests at a higher priority. Prior-
ities are assigned by the ABISS scheduler, and

Enqueue according to request priority
(as indicated by the ABISS scheduler)

Dequeue from
highest priority
to lowest

BE(1) }«>
e [}

Figure /: The ABISS elevator implements eight pri-
orities: one for real-time requests (RT), and seven
for best-effort (BE).

To device driver

can be per page (for real-time) or per file. The
elevator is discussed in more detail in section
3.6.

2.8 Scopes

Figure 5 illustrates for which areas of the system
the individual parts of ABISS are responsible.

=
L™~ ABISS daemon 2 >
IS [o @
L3 bi bi ticinat o ”
o 2 abiss abiss anticipatory 3
5f -E/{ 1 T 1 T 1 =8
-5 38
c P
o % ~— = e
OE) c g S
s 2 o @
o > -
@ ® 3
2 = O o
o 9 no
L w [test] [test) [foof [rest TR
= = T =
S ®
Each scheduler handles the open files fop

(

which ABISS services were requested

Figure 5: Example of how the elements of ABISS are
connected to distinct parts of a system.

The daemon oversees resource use in the
whole system. Elevators are configured per disk
device. If using ABISS on any part of a disk, the
entire disk must therefore be handled by an in-
stance of the ABISS elevator. ABISS schedulers
can be chosen individually for each mounted file
system. Finally, each scheduler takes care of all
open files on that file system, which are serviced

5. Files read using direct IO are not buffered in the ker-
nel, and can therefore not be combined with the ABISS
real-time service.

6. On Linux, the elevator is frequently called the “IO
scheduler”. In this paper, we always use “elevator”, to
avoid confusing it with ABISS’ scheduler, or the CPU
scheduler.

ABISS daemon Application

A
Requests and replies File 10

v
(PosixApPI(vFs))

ioctl
(Configuration interface)%

jConfiguration & commands P y N
e Map &
I I allocate
I Allocator i)
| , File
N v system

o o .
M Scheduler API Map driver

Scheduler cores

Scheduler library,

A
Prefetch - Page 10—
V

(Page cache / Page 10)

A

Block 10

Queue v -
< > Block device Iayer)

A
Sector 10

i

(Block device driver)

Figure 6: Querview of how ABISS interfaces with the ezisting Linuz IO subsystem.

(Application)
Application moves playout point

Application reads dat
(" Y
Scheduler caches data location

E |
>
e
]
:__u)) ,J_;| get_block)
=— Fl|_e system
Location map driver and
VFS

r prefetches daft
Playout buffer - -

\

Scheduler may
upgrade requests

vV ¥
Block 10

Elevator

Figure 7: The main components of the “test” sched-
uler are the location map, the playout buffer, and
the prefetch logic.

by ABISS. Files on other file systems, and files
for which no ABISS service has been requested,
are not seen by the schedulers, and are handled
with a default best-effort priority.

3 Implementation

Figure 6 shows the main components of the
Linux IO subsystem and of ABISS. When an ap-
plication reads or writes files, it uses the POSIX
APT and VFS to convey the operations to the
file system driver. Then, the file system driver
(through generic support functions not shown
here) generates accesses to the page cache.

Data is transferred between the page cache
and the disk through the block device layer:
first, a block IO request (struct bio) is as-
sembled, which is then sent to the block de-
vice layer, where it is turned into transfer re-
quests for a number of disk sectors. These re-
quests (struct request) are put into the re-
quest queue of the disk elevator. The disk device
driver then picks such requests from the queue
one after the other, and processes them.

The processing path for memory-mapped files
is similar. The main difference is that the activ-
ity is triggered through the VM subsystem and
goes only then to the file system driver.

In order to use ABISS with a file system, the
file system driver needs to be changed. The
changes mainly consist of adding a call to the
ABISS ioctl function and looping the driver’s

When requesting an ABISS RT service, the
scheduler records the file’'s on—disk location
in the location map.

ABISS redirects the file
system’s get_block functio

Disk block Length JK
]
If file is mapped, use
location map

File block

Location map (per file)

3o0|q 196 S.JaAlLp EHalSAS 9|14

If file is not mapped, use original get_block

Figure 8: The scheduler queries the file system
driver for the on-disk location of file data, and then
uses this location map to read the file without file
system meta-data accesses.

get_block and release functions through
ABISS.

ABISS also provides its own elevator, which
implements priorities. This elevator has to be
used by all devices on which file systems provid-
ing ABISS services are mounted.

Some small changes must be made to the ap-
plication, to request an ABISS service, and to
communicate with the scheduler.

The other parts of ABISS are completely new:
the scheduler orchestrates IO operations such
that the service goals are met. It is assisted in
this by the ABISS daemon in user-space, which
oversees global resource use and makes policy
decisions.

The allocator is an experimental component
for controlling write operations. This compo-
nent is described in more detail in section 5.

3.1 Scheduler

As shown in figure 7, the “test” scheduler con-
tains two major functional blocks:

e The “location map” caches the on-disk lo-
cation of file data, and helps to avoid diffi-
cult to handle accesses to file system meta-
data during real-time reading. There is one
location map per struct inode.

e The playout buffer caches file data, as de-
scribed in section 2.6. The scheduler does
the prefetching and also controls the rate at
which real-time operations occur. There is
one playout buffer per struct file.

Playout point

Enough credit ? Application moves
> playout point

No

®

o
/]

Drop first page, shift window

Playout buffer

Move immediately
{Request new page or”
upgrade existing reque

o Page cache o
Page arrives (in page cache%T
\%

Delayed movemen

Figure 9: Playout buffer movement is initiated by
the application mowving its playout point, and may
happen either immediately, or when sufficient credit
becomes available.

When preparing a file for real-time service,
the scheduler first looks up the locations of all
disk blocks occupied by file data, and stores
these locations for later use, in a data structure
called the “location map”. That way, the file
can later be read without accessing meta-data,
which makes it easier to predict the activity re-
sulting from this read operation. The use of the
location map is shown in figure 8.

The file system driver’s get_block function
is changed such that it calls a function in the
scheduler instead. This function checks if a lo-
cation map is available for the file, and if so,
looks up the block in question. If no location
map is available, the original get_block func-
tion of the file system driver is called.

The location map is also updated when writ-
ing to the file. It is implemented as a red-black
tree.

3.2 The playout buffer

The playout buffer is the heart of the scheduler,
and also its most complex part. This section
describes the process of moving it, and how it is
dimensioned.

When a file is set up for ABISS service, the
playout buffer is filled (at a best-effort priority,
but as quickly as possible) before the real-time
service begins.

Application playout point

Moves freely

=

Advances at the requested rate (or I
Kernel playout point

[] Page is no longer used

M Page is accessible and up to date
[Page is being loaded

f Pending read request

Figure 10: Playout buffer movement is controlled by
the position of two playout points, one from the ap-
plication, and the other from the kernel.

Moving the playout buffer

Figure 9 illustrates how the playout buffer move-
ments through the file: first, the application tells
the scheduler to move the playout point by some
number of bytes. The scheduler then checks if it
should move the playout buffer (by one or more
pages), and if there is enough credit available
for this. The credit is a measure of how far the
buffer can be moved at a given time. This con-
cept is described in more detail below.

If there is enough credit, the playout buffer
is moved immediately. Otherwise, the scheduler
sets a timer to expire when enough credit will
have accumulated. When the playout buffer is
moved, the first page in it is dropped,” the re-
maining pages are shifted by one position, and
the new page is requested. If a request for this
page is already in progress, the scheduler in-
forms the elevator that the request should now
be processed with real-time priority (see section
3.5).

If the playout buffer has to be moved by sev-
eral pages, the procedure is repeated.

Playout points

The playout buffer “moves” over the file by re-
moving pages at its left-hand side, and loading
new pages at its right-hand side. As shown in
figure 10, the movement is controlled by two
playout points: the application playout point in-
dicates the location after which the application

7. The playout buffer, which is organized as a ring
buffer, only contains pointers to the page structures, so
dropping a page means to release the reference.

credit >= Yes
one page ?

— Playout points differ by more
than the batching threshold

Load more ? -
Reduce credit by one

page and move buffe|

Yes

No

Set timer when credi
reaches one page

. No
Add credit Done <—
atrate r

[%]

g

| b

o Credit)
Credit limit 5
=

l_

One page @j
Set timer

Reduce credit

Figure 11: Playout buffer movement is limited by a credit that accumulates at the rate requested by the
application, and which is spent when the playout buffer advances through the file.

will access the file content. The application can
move this playout point at any time and to any
position.

The second playout point is maintained by the
scheduler in the kernel. It follows the applica-
tion playout point, but always moves forward,
and its average speed does not exceed the re-
quested rate.

If both playout points are on the same mem-
ory page, the playout buffer stops moving. If
the application moves its playout point outside
the playout buffer, e.g. because it does a “fast
forward” or because it exceeds the read rate, it
loses the real-time guarantees, the kernel play-
out point jumps directly to the location of the
application playout point, and the buffer is re-
filled at a best-effort priority.

Rate control

The average rate of movement is limited to
the rate the application requested: a movement
credit is accumulated at that rate, and whenever
the playout buffer moves, some of this credit is
spent. If the credit is too small, the scheduler
sets a timer that will expire when the credit is
sufficient to move the playout buffer by at least
one page. This process is illustrated in figure 11.

The credit serves two purposes: (1) it allows
the scheduler to handle time with more accuracy
than solely relying on timer expiration would,

and (2) it lets the scheduler compensate for de-
lays between deciding to initiate a series of read
requests, and the moment when these requests
are actually issued.

— Work queue latency

— Timer latency

Credit limit

— 1jiffie Credit is updated

— Batch siz)
L Maximum delay

between adding

o ' work queue
Mlnlmum duration entry and credit
of wait calculation

| | | | |
T T T T T T T T

[I—
1 jiffie Maximum delay between
timer tick and addition of
) / work queue entry
Timer is set

Figure 12: The limit keeps the scheduler from accu-
mulating excessive credit, while allowing it to com-
pensate for the delays occurring when scheduling I0
operations.

Since credit is accumulated whenever the
playout window is stopped, an arbitrary amount

of credit might be accumulated, and could then
be used to issue a large number of real-time read
operations, which would disturb overall system
performance, and make it impossible to usefully
predict delays. Therefore, the maximum credit
must be limited to a reasonable value.

As shown in figure 12, the credit consists of
the following parts:

e The credit required before the playout win-
dow moves at all. This is simply the batch
size, as described below.

e The accuracy of timers. Since the scheduler
always rounds up to the next higher entire
jiffie, the maximum inaccuracy is the timer
resolution, i.e. one jiffie.

e The delays between nominal timer expira-
tion and the moment when credit is used to
initiate IO operations. These delays depend
on how the scheduler is implemented, and
include — in the current design — the time
to act on timer expiration, plus the time
between enqueuing a work queue entry and
the time it gets executes.

Applications may use a similar algorithm to
time their own playout point movements.

Dimensioning the playout buffer

The playout buffer maintained by the scheduler
absorbs all deviations from an ideal constant-
rate flow. In section 2.6, we have already dis-
cussed the buffering requirements determined by
the application. They are shown in the upper
part of figure 13.8

The lower part of figure 13 shows the addi-
tional buffering needed to compensate for effects
caused by elements under the responsibility of
the operating system:

e A considerable amount of time may pass
between the moment, when the scheduler
should fetch a new page, and the time when
the request is actually enqueued. In the
current implementation, this includes the
time until the scheduler actually becomes
aware that it should issue a new request,
and, since we process playout buffer move-
ments through a work queue, the time it
takes until the work queue item is pro-
cessed.

e The time the request spends in the elevator
(waiting for other requests to complete?),
and then the time it takes for the disk to
process the request.

Application—dependent bufferin
1

Read size or work area
Application jitter

Kernel latency | Read batchin
10 latency
L |
Operating system and hardwa
dependent buffering

Figure 13: The playout buffer of the scheduler pro-
vides for buffering needs resulting from application
properties and from latencies caused by the operating
system and the hardware.

e Any batching performed by the scheduler.
Batching means that the scheduler does not
load each page immediately when it can,
but waits until a certain minimum number
of pages needs to be loaded, and then re-
quests them all at once. This way, high-
priority requests interfere less frequently
with lower priority requests, allowing the
latter to benefit more from the request or-
dering done by the elevator.

When requesting a real-time service, the ap-
plication only specifies its own buffering require-
ments. The kernel and the ABISS daemon then
increase the buffer size to include the additional
buffering needed for kernel and hardware.

3.3 API example

Communication between the application and
the ABISS scheduler is done with an ioctl. To
request an ABISS service on a file, the applica-
tion must first open the file, then fill in a mes-
sage structure with a scheduler-specific param-
eter block, and finally issue the ioctl, as shown
in the following skeleton code:

static struct abiss_attach_msg msg;
static struct abiss_sched_test_prm prm;

fd = open('"name", O0_RDONLY);

8. For simplicity, we subsume everything related to
non-ideal behaviour under “jitter”.

9. This includes all other requests at real-time priority
earlier in the queue, plus a best-effort request that may
be executing at that time. On devices with a slow trans-
fer rate, the maximum size limit for requests may have to
be lowered to prevent them from taking too much time.

msg.header.type = abiss_attach;
msg.sched_prm = &prm;

if (ioctl(fd, ABISS_IOCTL, &msg) < 0)
/* handle error */;

Typically, the only other change required is to
update the playout point after reading from the
file. Again, a message structure is used for this
purpose, as shown in the following code frag-
ment:

static struct abiss_position_msg msg;

got = read(fd, buffer, BUFFER_SIZE);
msg.header.type = abiss_position;
msg.pos = 0;

msg.whence = SEEK_CUR;

ioctl(fd, ABISS_IOCTL, &msg);

In this example, the playout point it set to the
current file position (called the file offset in [2]).
There is a also a library providing slightly eas-
ier to use wrapper functions for these operations.

3.4 Priorities

The mainstream Linux kernel currently has no
provision for specifying the priority of IO re-
quests. We build partly upon a mechanism for a
process-based “IO priority” that was proposed
by Jens Axboe a while ago [4], and that is poised
to be added to the Linux kernel [5].

Unfortunately, it is not possible to pass priori-
ties directly along with the operations that even-
tually lead to an IO request. Instead, each pro-
cess or thread has its own “IO priority” which
applies to all disk IO operations executing under
this process.

ABISS uses real-time priorities only indi-
rectly, in the work queue thread that prefetches
pages. We therefore set the IO priority of that
kernel thread to the real-time priority, before it
starts prefetching pages, and return it to its pre-
vious value when done.

Independently from this, processes can set
their own IO priority for any operations not in-
volving ABISS.

3.5 Upgrades

When the scheduler tries to prefetch a page that
has already been requested, that request may be
at a lower priority and may have to be upgraded.
This can happen if the application has slightly
exceeded its read rate, and attempted to access a
page beyond the playout buffer a moment before

the playout buffer shifts to cover this page, but
also if a different application is reading the file
at non-real-time priority.

When upgrading a page, the scheduler tells
the elevator to look for the request that includes
the page, and to move that request to the cor-
responding higher priority queue. If the request
covers pages with different priorities, the highest
priority is used.'°

3.6 Elevator

The ABISS elevator provides the infrastructure
for enforcing IO priorities. Besides implement-
ing priorities, it differs in a few other regards
from the regular elevators in the Linux kernel,
i.e. deadline, anticipatory, and CFQ (Complete
Fairness Queuing):

e It reserves space in the request queue for
high-priority requests, so that they do not
have to compete for request queue slots on
equal terms with lower-priority requests.

e Barriers are handled in a way that is rela-
tively unobtrusive for read operations. As
a welcome side effect, request ordering se-
mantics also become more intuitive.!!

e Since we expect that the ABISS elevator
may be used with comparably large request
queue sizes, it serializes requests before a
barrier at O(p) instead of the O(n) required
by the regular elevators, for p priorities and
n pending requests.

10. This may lead to upgrading a possibly large number
of pages that should not (or not yet) be retrieved at
real-time priority, and might cause the real-time priority
queue to grow such that other deadlines will be missed.
Since this extension does not cause long-range seeks, the
impact should normally be low, and the ABISS daemon
can compensate by slightly enlarging the playout buffers
of files open for real-time reading. On slow disks, one
may also have to adjust the maximum request size.

Doing the opposite, i.e. keeping the request at a lower
priority until all pages have been upgraded, yields even
less predictable effects, and is likely to cause more pro-
nounced deadline slips.

The correct solution would be to split this request into
a high and one or two low priority parts. Unfortunately,
this conflicts somewhat with the design of the elevator
subsystem in the Linux kernel.

Combined requests, as described in the following sec-
tion, no longer take part in the priority scheme, and are
never upgraded.

11. There is some controversy over whether making or-
dering semantics in general more predictable is truly de-
sirable, or whether this is a misguided attempt at imple-
menting semantics that cannot be guaranteed in other
scenarios anyway. Fortunately, the ABISS elevator can
easily be changed to implement either behaviour.

The ABISS elevator is mainly meant for ex-
ploring performance and implementation issues
related to prioritized IO, and it currently does
not aim to offer balanced performance for com-
plex loads, like the anticipatory or CFQ eleva-
tors do.

In the future, we will try to merge the func-
tionality of the ABISS elevator that is not spe-
cific to ABISS (that is, almost everything) into
the CFQ elevator.

Enqueuing requests

Figure 14 shows the data structures in the eleva-
tor. It is divided into two areas, one for reads,
the other for writes and requests with special
ordering requirements. In each area, there are
eight priority queues — one for each priority.

Elevator

Areas (2, read and write) |

Footprint

Priority queues (8)

Cursor

Wilslelill /

H 3

Sort
0 {>| /ﬂ Sort queue I J; D>
2

Back
u / {>| FIFO queue I D>
1
Current | LIFO queue I—-l>

Front

Figure 14: Data structures in the ABISS elevator.

Regular requests are added to the sort queue,
a linear list, which is ordered by the start sec-
tors of the requests in it. The ordering is
accomplished through a red-black tree. Re-
quests which may not be reordered with respect
to other requests are placed in either a FIFO
queue,'? or the LIFO queue. Requests that are
requeued by a block device are added at the head
of the respective FIFO queue.

/Original footpr\int No overlap
I I
7777 EI 2
| . S
[
Overlafqr %

|

|

I : Combined request
| |

1 | |

New request

Resulting footprint

<—— Block number——=>

[1Nooverlap [Footprint
Overlap Combined (hidden’

Figure 15: The “footprint” of a request is the range
of sectors covered by all the overlapping requests it
is combined with.

Retrieving requests

When looking for the next request, the LIFO
queue has priority over anything else. If the
LIFO queue is empty, the FIFO queue in the
currently active area is searched.'® Finally, if
also the FIFO queue was empty, the priority
queues of the currently active area are searched,
from highest to lowest.

When retrieving the next request from a sort
queue, the request pointed to by the so-called
cursoris taken. The cursor moves from requests
beginning at low sectors towards those at higher
sectors. When reaching the last request in the
sort queue, it wraps back to the beginning. This
way, each priority implements a single-sweep el-
evator.

The elevator alternates between reading and
writing. Each phase is given a certain amount
of time.'* A phase ends if either that amount of

12. Usually, all requests going to a FIFO queue go to
the write area. The only exception to this are fully over-
lapped read requests, which, after being retrieved from
the sort queue, go to the FIFO queue of the read area
instead (see below).

13. Except if the request that was returned last has not
yet been removed from the queue, and no other request
was enqueued in the LIFO queue. This mechanism is
there, because an elevator must consistently return the
same “current” request until that request is explicitly
removed.

14. At the time of writing, we use 2 seconds for the read
phase, and 30 ms for the write phase.

time has passed, or if there are no more requests
of the corresponding type. The phase change is
postponed if the other area contains no requests.

Barrier semantics

Barriers and overlapping requests require special
treatment. In the regular elevators on Linux,
barriers separate all requests before and after
them, and the elevators give no guarantees with
respect to the ordering of overlapping requests.
While barriers are rarely used, delaying new
requests until all pending requests have been
processed may cause significant delays also for
higher-priority requests.

Fortunately, it makes no difference if we re-
order read requests even across barriers, as long
as they are not moved beyond write requests
accessing the same disk sectors. The ABISS el-
evator therefore honors barriers only for write
requests, and ensures that read requests never
cross write requests which whom they overlap.
For simplicity, we always avoid reordering write
requests that overlap with other write requests.
This has the added benefit that data read and
written with the ABISS elevator is exactly the
same as if a simple FIFO was used.

"Head" request

[7 |

P T]
atetetetatetatetetititotetelel

) Original new request
Combined request

Figure 16: The resulting request combines all re-
quests overlapping with the original new request.

Overlapping requests

Overlapping requests can only occur in com-
bination with operations that bypass the page
cache, i.e. direct reads and writes by file system
drivers, or files opened with 0_DIRECT. Overlap-
ping parts of transfers going through the page
cache only cause disk IO once, and are resolved
within the cache with FIFO semantics.

New write requests are checked for overlaps
with existing read and write requests, while new
read requests are only checked against existing
write requests. If overlaps are found, all over-
lapping requests are combined in a list such that
the existing requests appear in an arbitrary or-
der, followed by the new request. Only the first
request of this list is visible in the sort queue and
all the trees. In order to account for the requests
hidden behind this first request, we introduce
the concept of a request’s footprint, which is the
range of sectors used when looking for overlaps.
When combining requests, the footprint of the
first request is increased accordingly. This pro-
cedure is illustrated in figure 15.1°

If any of the overlapping requests are already
combined requests, all its components are added
as individual requests (i.e. there are no com-
bined requests nested inside other combined re-
quests), but they retain their relative order.

Figure 16 shows a possible result of this op-
eration. Note that the new request that caused
the overlaps is last in the combined request.

First request becomes "current

d

eescseid

FIFO queue/ 11 I—l>

(.

Sort queue

Overlapping requests are placed
in the FIFO queue

Figure 17: Combined requests are split when retriev-
ing them.

Overlapping requests are detected by looking
up the range of sectors they cover in a radix pri-
ority search tree maintained at each area. This
is the dark tree looming in the background on

15. We are exercising a little artistic freedom here: the
configuration in this example could not occur in real life:
Overlapping requests like the two on the left would al-
ways be combined if they were in a write area, so this
must be a read area. However, in a read area, there
would be no reason to combine the middle request of the
combined request.

Requests that cover an identical range of sectors, like
the first and the last request in the combined request,
would be combined even in a read area, because the
search tree we use cannot accommodate identical entries.
Therefore, in that exceptional case, the combined request
stays in the read area.

ABISS - Real Time

Deadline

1000 T N 1000} T T T d T ‘l T } T l‘ N T N T N T N T 1000 T ‘ T N T N T N T
« 100 |- 1001 7 - © 100~ -
3 . E 3 10
8 10 / 1] 8
R I [
01 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 01 1
0 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
delay [ms] delay [ms]
ABISS - Best Effort CFQ
10000 T T T T T T T T T 1000 T T
I I I I I I I I I I
&1000 1 100]
S 100 - S
> > —
8 10 4 g1
R TH 17 L [
01 l 1 l 1 l 1 l 01
“0 100 200 3()0 400 500 600 700 800 900 ' 100 200 300 400 500 600 700 800 900
delay [ms] delay [ms]
Anticipatory Noop
10000 T N T N T N T N T I T N T N T N T 1000 T I T N T N T N T
&1000 B 1 @100}]
S 100 - S
> > —
8 10 4 g
H* 1] ** 1H —
0.1 [I 0.1] I” [T R R
0 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
delay [ms] delay [ms]

Figure 18: Histogram of the time between issuing a read() call and obtaining the data for the ABISS elevator

in RT and BE mode, and for the other Linuz elevators.

The measurement was done with four real-time

streams reading at 1 MB/s and a continuous best-effort read of a large file in the background. In the case

of the real-time ABISS elevator the mazimum delay is around 8 ms.

was 20 pages.

figure 14. After combining requests, the result is
enqueued in the write area, since the combined
request contains at least one write.

When retrieving a combined request, the
“head” becomes the next (current) request,
while the rest is separated and placed in the
FIFO queue. This is shown in figure 17.

The structure of the ABISS elevator also al-
lows barriers to be implemented very efficiently:
since they only affect the write area, it is suf-
ficient to add the contents of all sort queues to
the FIFO queue, which is an O(1) operation for
each queue. Because this empties all trees in
this area, their elements do not need to be re-
moved individually, but the trees can simply be
initialized to their empty state.

3.7 Known problems

A general and difficult to solve problem are de-
lays that may appear anywhere along the code
paths involved in processing 10 requests. In par-
ticular, memory management can trigger scans
for free pages, with a significant run time. Our

The batch size for this measurement

current work-around is to apply generous buffer-
ing.

Another (minor) problem of best-effort prior-
ities is that requests cannot be upgraded, be-
cause ABISS is not participating in request gen-
eration.

Real-time reads currently begin as soon as the
batch size is reached. This means that the time
intervals for best-effort afforded by these batches
get fragmented into smaller intervals if there is
more than one real-time reader. This defeats
the purpose of read batching.

Last but not least, ABISS presently provides
no guarantees for writes. There is experimental
infrastructure in place that allows ABISS to con-
trol where free space is allocated, and that also
helps to eliminate meta-data accesses (which, if
they are reads, may block).

4 Measurements
In this section we will compare the performance

of ABISS to that of the other Linux elevators:
Anticipatory (the default in the Linux 2.6.7 ker-

Elevator Foreground readers Background reader [MB/s] Playout buffer
with 1 foreground with 4 foreground

ABISS RT, 10 page batch 7.7 0.27 564 kB
RT, 20 page batch 8.0 2.5 564 kB
RT, 40 page batch 8.7 4.0 564 kB
RT, 80 page batch 9.4 5.8 564 kB
RT, 160 page batch 9.5 6.6 1064 kB
BE 7.7 1.5 —

Anticipatory 7.8 2.7 —

Deadline 7.9 1.8 —

CFQ 7.9 18 —

Noop 7.9 2.0 —

Table 1: Data rate obtained by a “background” best-effort reader against one and four concurrent “fore-

ground” best-effort or real-time readers.

nel), Completely Fair Queuing (CFQ), Deadline
and Noop. The measurements were done on a
system with 128 MB of memory, and a Trans-
meta Crusoe TM5800 [6] CPU, running at 800
MHz. Two hard disks were connected to the
system: the primary /dev/hda, containing the
boot and system partitions was a 2.5 inch 60
GB hard disk, the secondary hard disk /dev/hdc
was a 2.5 inch 20 GB 4200 rpm Hitachi Travel-
star hard disk [7], with only one partition.

Two tests were performed in which one or four
simultaneous streams, reading different 105 MB
files on the secondary hard disk, were started.
The streams were started with the rdrt tool,
part of the ABISS distribution, which reads a
certain file at a predefined data rate. The data
were read in blocks of 64 kB, at a rate of 1 MB/s.
The playout buffer size was set to 564 kB. The
rdrt tool allows logging the delay between issu-
ing a read command and the arrival of the data
in the application. In parallel to these real-time
streams, which we shall call our foreground read-
ers, a background best-effort read stream on a
fifth large file was started by running a program
that continuously reads a 175 MB file in chunks
of 128 kB, using fread().

Several measurements were done: one in
which the ABISS real-time service was used,
one in which the ABISS elevator was used, but
only for best-effort (default priorities for both
the four foreground streams as well as for the
background reader). In the other measurements
the other Linux elevators were used. For the
measurements with the ABISS real-time service
several batch sizes were tried: 10, 20, 40, 80 and
160 pages (one page is 4 kB).

The results of the measurements with four
real-time streams are shown as a histogram in

figure 18. For a certain delay time on the x axis
the number of times this delay occurred is on the
y axis. The results of all four real-time streams
were summed.

The benefits of using real-time ABISS can be
clearly seen; all delays are smaller than 8 ms
which means that applications can do with a
very small buffer. In the case of best-effort traf-
fic the delays that occur when reading can be up
to a second, which implies for this case that the
applications will need a buffer of at least 1 MB
(and will also incur a latency to user input of at
least 1 second). Figure 18 shows the result with
a batch size of 20 pages. In other measurements
sometimes one or two reads were seen with a de-
lay up to 25 ms. These have not been explained
yet.

It is also interesting to see what data rate the
best-effort reader could obtain. These rates are
listed in table 1. It can clearly be seen that
the rate is strongly dependent on the batch size.
However, already with a 40 page batch size, the
impact of the real-time readers on the back-
ground reader is lower than if using the same
number of best-effort readers. As expected, the
other elevators perform better than the ABISS
elevator under a pure best-effort load, but still
show degradation well beyond that experienced
with properly tuned ABISS real-time readers.

5 Conclusions and future

work

In this paper we present our work done on real-
time file I/O on hard disks. The ABISS frame-
work allows for different services that can be im-
plemented in modules that can be changed at

run time. In this paper we have shown results
with a performance scheduler and compared to
results obtained with the standard best-effort
way of scheduling I/O. By using ABISS the sys-
tem is able to guarantee a certain bandwidth to
an application, without the need for large mem-
ory buffers on the application side.

Writing with real-time guarantees is not yet
supported. The main challenge in writing large
files is to prevent fragmentation of the files. For
instance, in the current file systems writing mul-
tiple files simultaneously will result in relatively
small, interleaved areas on the hard disk. To
circumvent this, work has to be done on the al-
locator, the entity that assigns disk blocks to
files that are written.

Future work will also include different, ABISS
services. For instance, for portable systems
power is very important. An ABISS scheduler
might allow for power management thus extend-
ing the battery life of a portable device.

Furthermore, since there is general inter-
est in functionality to let also the mainstream
kernel differentiate IO services, we will merge
mechanisms that have been successfully used in
ABISS, and submit them for inclusion into the
2.6 or 2.7 kernel.

References

[1] Li, Hong; Cumpson, Stephen R.; Korst, Jan;
Jochemsen, Robert; Lambert, Niek. A Scal-
able HDD Video Recording Solution Using
A Real-time File System. IEEE Transactions
on Consumer Electronics, Vol. 49, No. 3,
663-669, 2003.

[2] The Open Group Base Specifications Issue 6,
IEEE Std 1003.1, 20038 Edition, The IEEE
and The Open Group, 2003. http://www.
opengroup.org/onlinepubs/007904975/

[3] Piggin, Nick. Runtime selectable 10 sched-

ulers. http://www.kerneltrap.org/
“npiggin/elevator/

[4] Axboe, Jens. [PATCH] cfg + io pri-
orities. Posted on the linux-kernel
mailing list, November 8§, 2003.

http://www.uwsg.iu.edu/hypermail/
linux/kernel/0311.1/0019.html

[5] Axboe, Jens. Linux Block IO—present
and future. Proceedings of the Linux Sym-
posium, vol. 1, pp. 51-61, Ottawa, July
2004. http://www.finux.org/Reprints/
Reprint-Axboe-0LS2004.pdf

[6] The Transmeta Corporation http:
//www.transmeta.com/crusoe/crusoe_
tm5800_tm5500.html

[7] Hitachi Global Storage Technologies,
disk model number IC25N020ATMRO04,
http://www.hitachigst.com/hdd/
support/80gn/80gn.htm

