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Abstra
t

The A
tive Blo
k I/O S
heduling System

(ABISS) is an extension of the hard-disk stor-

age subsystem of Linux, whose main purpose is

to provide a guaranteed reading and writing bit

rate to appli
ations.

1 Introdu
tion

The availability of inexpensive mainstream IDE

Hard Disk Drives (HDD) has allowed the use

of these disk drives in home and mobile audio-

visual (A/V) appli
ations. This fast-in
reasing

storage 
apa
ity has 
reated a new 
lass of de-

vi
es like HDD video re
orders, personal audio

players et
. Be
ause the number of streams that

has to be read or written to disk is usually lim-

ited to one or two, streaming from and to a hard

disk is 
urrently not an issue in these devi
es.

Currently a 
lear trend is visible in whi
h

CE devi
es will be
ome inter
onne
ted through

home networks in the near future. Devi
es like

these will need to be able to serve multiple data

streams, while providing a 'soft real-time' ser-

vi
e. This sharing should be eÆ
ient be
ause

- even more than e.g. in the traditional PC

environment - CE devi
es often have to meet

other 
onstraints like low power 
onsumption,

noise-free operation, minimum hardware 
ost,

et
. Resour
e sharing 
an be a

omplished by

either making the appli
ations aware of ea
h

other, or by making the system aware of the

appli
ations.

In this paper we will present the results of

work done on the hard-disk storage subsystem

of Linux, resulting in the A
tive Blo
k I/O

S
heduling System (ABISS). The main purpose

of ABISS is to make the system appli
ation-

aware by either providing a guaranteed reading

and writing bit rate to any appli
ation that asks

for it or denying a

ess when the system is fully


ommitted. Apart from these guaranteed real-

time (RT) streams, our solution also provides

priorities for best-e�ort (BE) disk traÆ
.

The system 
onsists of a framework that is

in
luded in the kernel, with a poli
y and 
oor-

dination unit implemented in user spa
e. This

approa
h ensures separation between the kernel

infrastru
ture (the framework) and the poli
ies

(e.g. admission 
ontrol) in user spa
e.

The kernel part 
onsists of our own elevator

and a new 'read s
heduler', 
ommuni
ating with

a user-spa
e daemon. The elevator implements

the multiple priorities of the streams and the

read s
heduler is responsible for timely preload-

ing and bu�ering of data. Apart from the ele-

vator and read s
heduler, some minor modi�
a-

tions were made to �le system drivers.

ABISS works from similar premises as RTFS

[1℄, but puts less emphasis on tight 
ontrol of

low-level operations, and more on 
onvergen
e

with 
urrent Linux kernel development.

In se
tion 2 we will give an overview of the

system, in se
tion 3 the implementation is de-

s
ribed in more detail. Some measurements will

be presented in se
tion 4.

The ABISS proje
t is hosted at http://

abiss.sour
eforge.net/

2 Overall ar
hite
ture

In this se
tion, we des
ribe the role of the in-

dividual 
omponents that make up the ABISS

system, and how they intera
t.

Figure 1 shows the data path when read-

ing from disk: the appli
ation issues requests

to VFS, whi
h translates them to requests for

the disk blo
ks that 
omprise the 
orrespond-

ing data pages.
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The blo
k IO subsystem then

queues these requests, and feeds them to the de-

vi
e driver, whi
h retrieves the data from disk.

1. When using the term \request" in this paper, we

usually refer to su
h a blo
k IO request. The kernel

data stru
ture des
ribing su
h a request is aptly named

stru
t request.
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Figure 1: The ABISS real-time servi
e enhan
es reg-

ular �le IO by prefet
hing data su
h that the appli-


ation never has to wait for disk a

esses.

When an appli
ation requests a real-time

servi
e (see below) from ABISS, the so-
alled

s
heduler 
omponent of ABISS prefet
hes data

into the page 
a
he su
h that it will already be

in memory when the appli
ation reads it.

ABISS 
onsists of a generi
 framework and

modules that implement spe
i�
 servi
es. The

kernel part is assisted by a user-spa
e daemon,

whi
h oversees system-wide resour
e use, and

makes poli
y de
isions. In this paper, we only

dis
uss the real-time servi
e available in the de-

fault 
on�guration. In the future, other servi
es

may be added.

2.1 Appli
ation and servi
e model

With ABISS, an appli
ation 
an spe
ify for ea
h

open �le
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in qualitative and quantitative terms

how it expe
ts a

esses to be handled. This

des
ription de�nes how the appli
ation will be-

have, and what servi
e it expe
ts from the oper-

ating system. ABISS then de
ides whether sys-

tem resour
es allow it to provide this servi
e,

and whether the appli
ation is entitled to it. If

yes, ABISS makes the ne
essary arrangements,

and indi
ates to the appli
ation that the servi
e

is available.

The appli
ation then a

esses the �le in a
-


ordan
e with the pro�le it has spe
i�ed in its

request, and re
eives the agreed upon servi
e in

return. While doing so, the appli
ation may give

ABISS indi
ations of this use, e.g. by informing

it about the 
urrent position in the �le.

When the appli
ation 
loses the �le, the ser-

vi
e is automati
ally terminated. The usual

rules for sharing of open �les apply, e.g. if an ap-

pli
ation forks, the same servi
e is used jointly

by both pro
esses then sharing the �le.

2.2 Servi
e de�nition

In the rest of this paper, we will fo
us on the

guaranteed real-time servi
e. This servi
e only

applies to reading.

From the appli
ation's point of view, the real-

time servi
e is 
hara
terized by a rate (r) and a

bu�er size (b). The appli
ation sets the playout

point to mark the lo
ation after whi
h it per-

forms a

esses. As long as the playout point

moves at rate r or less, a

esses to up to b bytes

after the playout point will be served from mem-

ory. If the appli
ation moves the playout point

faster, the range shrinks a

ording to the ex
ess

rate, and grows again towards b if the appli
a-

tion slows down.

For a formal de�nition, if we 
onsider reading

a �le as a sequen
e of n single-byte a

esses, with

the i-th a

ess at lo
ation a

i

, at time t

i

, and with

the playout point set to p

i

, the operating system

then guarantees that all a

esses are served from

memory, as long as the following 
onditions are

met for all i; j in 1; : : : ; n with t

i

< t

j

:

p

i

� p

j

< p

i

+ b+ r(t

j

� t

i

)

p

j

� a

j

< b+min(p

j

; p

i

+ r(t

j

� t

i

))

The infrastru
ture 
an also be used to im-

plement a prioritized best-e�ort servi
e without

guarantees. Su
h a servi
e would ensure that, on

average and when measured over a suÆ
iently

long interval, a reader that has always at least

one request pending, will experien
e better la-

ten
y and throughput, than any reader using a

lower priority.

2.3 API

ABISS does not require any 
hanges in the way

appli
ations read and write �les. Also memory-

mapped �le a

ess is fully supported.

However, in some 
ases, the ABISS s
heduler

(see below) needs further help from the appli-

2. We use the term \open �le" to refer to what POSIX

[2℄ 
alls an \open �le des
ription", i.e. the obje
t a �le

des
riptor points to. For one �le (represented in the

kernel by stru
t inode), there 
an be many open �les

(represented by stru
t file).




ation. For example, when reading a �le, par-

ti
ularly if memory-mapped, the kernel 
annot

reliably determine the exa
t lo
ation of the ap-

pli
ation's playout point.
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Therefore, the appli-


ation needs to expli
itly send this information.

Appli
ations use io
tls for all ABISS-related


ommuni
ation. For 
onvenien
e, there is also a

library of wrapper fun
tions, providing a higher-

level interfa
e.

2.4 User-spa
e daemon

When an appli
ation requests a servi
e from

ABISS, the request is examined and re�ned in

several steps. This is shown in �gure 2. First,

the request is 
he
ked for formal validity. For ex-

ample, it may spe
ify a servi
e that is di�erent

from what has been 
on�gured on the �le sys-

tem in question, or the set of parameters may

be in
omplete. Most of these problems are de-

te
ted by the general framework of ABISS in the

kernel, even before 
alling the s
heduler.

ABISS daemon

ABISS framework

System−wide resource management and policy

Application

Service request

Scheduler

General consistency checks
and scheduler selection

Admission control. May modify requests.

returns response to application
Sets up internal data structures,

Figure 2: When pro
essing a servi
e request, the ker-

nel delegates the admission 
ontrol de
ision to the

ABISS user-spa
e daemon.

Then, the request is sent to the ABISS dae-

mon. This daemon keeps tra
k of system-wide

resour
e utilization, and de
ides whether the

system is 
apable of providing the requested ad-

ditional servi
e. This de
ision 
an also in
lude

poli
y, su
h as quotas assigned to individual

users, and other a

ess 
ontrol 
onsiderations.
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The ABISS daemon 
an also modify the re-

quest and add new parameters. The request is

then passed ba
k to the kernel, and { if it was

a

epted { used by the s
heduler to a
tually im-

plement the 
orresponding servi
e.

Communi
ation between the ABISS daemon

and the kernel is message-based, and uses a mis-


ellaneous devi
e.

2.5 S
heduler

The s
heduler implements the time-related as-

pe
ts of a servi
e, and de�nes its properties. It

is assisted by the user-spa
e daemon des
ribed

above.

S
hedulers are modules in the ABISS sys-

tem, and 
an be 
on�gured individually for ea
h

mounted �le system. Ea
h s
heduler module

may also implement several di�erent servi
es or

operating modes. In the rest of this paper, we

will fo
us on the \test" s
heduler, whi
h imple-

ments the real-time and prioritized best-e�ort

servi
es des
ribed in se
tion 2.2.

When using the real-time servi
e, the s
hed-

uler prefet
hes pages of the �le the appli
ation is

reading. This is similar to the read-ahead fun
-

tionality the kernel normally provides, but uses

the bu�ering requirements the appli
ation spe
-

i�ed to prefet
h pages su
h that the appli
ation

will never try to read a page that has not been

prefet
hed yet. Furthermore, the s
heduler as-

signs a high priority to its read requests, so that

the time until a page is read from disk be
omes

predi
table. Priorities are implemented by the

elevator, whi
h is des
ribed below.

The s
heduler limits the rate at whi
h the ap-

pli
ation 
an read data at real-time priority to

the rate the appli
ation spe
i�ed when request-

ing the real-time servi
e.

2.6 Playout bu�er

When an appli
ation reads data from a �le, this

data is normally bu�ered in kernel spa
e, and

then transferred to user spa
e as needed. The

kernel also tries to read data ahead of time, so

that the appli
ation does not have to wait for the

a
tual disk a

ess. Data is normally prefet
hed

in multiples of one memory page (a page has

typi
ally a size of 4 kB).

For real-time reads, ABISS builds upon this


on
ept, and prefet
hes data a

ording to the

rate at whi
h the appli
ation will read it. This

is illustrated in �gure 3. Pages are still kept in

the page 
a
he, but in addition to this, they are

3. The playout point is the �le lo
ation from whi
h the

appli
ation is 
urrently reading. We dis
uss the playout

point in more detail in se
tion 3.2.

4. At the time of writing, poli
y is not yet imple-

mented.



Kernel preloads pages from disk

Playout buffer
moves over
the file

Playout buffer

Application

Application reads or maps pages
in the playout buffer

Figure 3: The kernel prefet
hes pages into the play-

out bu�er, su
h that they are in memory when the

appli
ations retrieves them.

lo
ked in memory while they are in the playout

bu�er.
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Besides the data rate, ABISS also takes into

a

ount bu�ering requirements of appli
ation

and kernel. The data rate is spe
i�ed by the ap-

pli
ation when requesting the real-time servi
e.

The appli
ation also spe
i�es its own bu�ering

requirements, for whi
h it has to take into a
-


ount the following fa
tors:

� The amount of data the appli
ation will re-

trieve or a

ess at on
e.

� The amount of time the appli
ation may be

ahead or behind of the spe
i�ed rate. This

may be due to the way that the appli
ation

is designed, but it may also be due to delays

in
i
ted by the operating system.

� Any deviation from a sequential a

ess pat-

tern.

There are also various operating system and

hardware properties that need to be taken into

a

ount when dimensioning the playout bu�er.

Their handling is transparent to the appli
ation,

and explained in se
tion 3.2.

2.7 Elevator

The elevator
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orders disk IO requests in a way

that minimizes movements of the disk drive

head, and that also tries to ensure that no appli-


ation monopolizes disk a

esses. Linux allows


on�guration of the elevator at boot time, and,

as an extension [3℄, also at run time.

ABISS has its own elevator that implements

eight distin
t priorities, as shown in �gure 4.

Requests at a lower priority are only served if

there are no requests at a higher priority. Prior-

ities are assigned by the ABISS s
heduler, and

BE(7) To device driver

BE(1)
Dequeue from
highest priority
to lowest

(as indicated by the ABISS scheduler)
Enqueue according to request priority

RT

Figure 4: The ABISS elevator implements eight pri-

orities: one for real-time requests (RT), and seven

for best-e�ort (BE).


an be per page (for real-time) or per �le. The

elevator is dis
ussed in more detail in se
tion

3.6.

2.8 S
opes

Figure 5 illustrates for whi
h areas of the system

the individual parts of ABISS are responsible.

A
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system
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S
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S

 scheduler, one per file

abiss abiss anticipatory

ABISS daemon

test test foo test

Each scheduler handles the open files for
which ABISS services were requested

Figure 5: Example of how the elements of ABISS are


onne
ted to distin
t parts of a system.

The daemon oversees resour
e use in the

whole system. Elevators are 
on�gured per disk

devi
e. If using ABISS on any part of a disk, the

entire disk must therefore be handled by an in-

stan
e of the ABISS elevator. ABISS s
hedulers


an be 
hosen individually for ea
h mounted �le

system. Finally, ea
h s
heduler takes 
are of all

open �les on that �le system, whi
h are servi
ed

5. Files read using dire
t IO are not bu�ered in the ker-

nel, and 
an therefore not be 
ombined with the ABISS

real-time servi
e.

6. On Linux, the elevator is frequently 
alled the \IO

s
heduler". In this paper, we always use \elevator", to

avoid 
onfusing it with ABISS' s
heduler, or the CPU

s
heduler.
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Figure 6: Overview of how ABISS interfa
es with the existing Linux IO subsystem.
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Figure 7: The main 
omponents of the \test" s
hed-

uler are the lo
ation map, the playout bu�er, and

the prefet
h logi
.

by ABISS. Files on other �le systems, and �les

for whi
h no ABISS servi
e has been requested,

are not seen by the s
hedulers, and are handled

with a default best-e�ort priority.

3 Implementation

Figure 6 shows the main 
omponents of the

Linux IO subsystem and of ABISS. When an ap-

pli
ation reads or writes �les, it uses the POSIX

API and VFS to 
onvey the operations to the

�le system driver. Then, the �le system driver

(through generi
 support fun
tions not shown

here) generates a

esses to the page 
a
he.

Data is transferred between the page 
a
he

and the disk through the blo
k devi
e layer:

�rst, a blo
k IO request (stru
t bio) is as-

sembled, whi
h is then sent to the blo
k de-

vi
e layer, where it is turned into transfer re-

quests for a number of disk se
tors. These re-

quests (stru
t request) are put into the re-

quest queue of the disk elevator. The disk devi
e

driver then pi
ks su
h requests from the queue

one after the other, and pro
esses them.

The pro
essing path for memory-mapped �les

is similar. The main di�eren
e is that the a
tiv-

ity is triggered through the VM subsystem and

goes only then to the �le system driver.

In order to use ABISS with a �le system, the

�le system driver needs to be 
hanged. The


hanges mainly 
onsist of adding a 
all to the

ABISS io
tl fun
tion and looping the driver's

File block Disk block Length

in the location map.
scheduler records the file’s on−disk location
When requesting an ABISS RT service, the

?

ABISS redirects the file
system’s get_block function

Location map (per file)

If file is mapped, use
location map

If file is not mapped, use original get_block

F
ile system

 driver’s get_block

Figure 8: The s
heduler queries the �le system

driver for the on-disk lo
ation of �le data, and then

uses this lo
ation map to read the �le without �le

system meta-data a

esses.

get_blo
k and release fun
tions through

ABISS.

ABISS also provides its own elevator, whi
h

implements priorities. This elevator has to be

used by all devi
es on whi
h �le systems provid-

ing ABISS servi
es are mounted.

Some small 
hanges must be made to the ap-

pli
ation, to request an ABISS servi
e, and to


ommuni
ate with the s
heduler.

The other parts of ABISS are 
ompletely new:

the s
heduler or
hestrates IO operations su
h

that the servi
e goals are met. It is assisted in

this by the ABISS daemon in user-spa
e, whi
h

oversees global resour
e use and makes poli
y

de
isions.

The allo
ator is an experimental 
omponent

for 
ontrolling write operations. This 
ompo-

nent is des
ribed in more detail in se
tion 5.

3.1 S
heduler

As shown in �gure 7, the \test" s
heduler 
on-

tains two major fun
tional blo
ks:

� The \lo
ation map" 
a
hes the on-disk lo-


ation of �le data, and helps to avoid diÆ-


ult to handle a

esses to �le system meta-

data during real-time reading. There is one

lo
ation map per stru
t inode.

� The playout bu�er 
a
hes �le data, as de-

s
ribed in se
tion 2.6. The s
heduler does

the prefet
hing and also 
ontrols the rate at

whi
h real-time operations o

ur. There is

one playout bu�er per stru
t file.
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Figure 9: Playout bu�er movement is initiated by

the appli
ation moving its playout point, and may

happen either immediately, or when suÆ
ient 
redit

be
omes available.

When preparing a �le for real-time servi
e,

the s
heduler �rst looks up the lo
ations of all

disk blo
ks o

upied by �le data, and stores

these lo
ations for later use, in a data stru
ture


alled the \lo
ation map". That way, the �le


an later be read without a

essing meta-data,

whi
h makes it easier to predi
t the a
tivity re-

sulting from this read operation. The use of the

lo
ation map is shown in �gure 8.

The �le system driver's get_blo
k fun
tion

is 
hanged su
h that it 
alls a fun
tion in the

s
heduler instead. This fun
tion 
he
ks if a lo-


ation map is available for the �le, and if so,

looks up the blo
k in question. If no lo
ation

map is available, the original get_blo
k fun
-

tion of the �le system driver is 
alled.

The lo
ation map is also updated when writ-

ing to the �le. It is implemented as a red-bla
k

tree.

3.2 The playout bu�er

The playout bu�er is the heart of the s
heduler,

and also its most 
omplex part. This se
tion

des
ribes the pro
ess of moving it, and how it is

dimensioned.

When a �le is set up for ABISS servi
e, the

playout bu�er is �lled (at a best-e�ort priority,

but as qui
kly as possible) before the real-time

servi
e begins.

Application playout point

Moves freely

Kernel playout point

Page is no longer used

Page is accessible and up to date

Page is being loaded

Pending read request

Advances at the requested rate (or less)

Figure 10: Playout bu�er movement is 
ontrolled by

the position of two playout points, one from the ap-

pli
ation, and the other from the kernel.

Moving the playout bu�er

Figure 9 illustrates how the playout bu�er move-

ments through the �le: �rst, the appli
ation tells

the s
heduler to move the playout point by some

number of bytes. The s
heduler then 
he
ks if it

should move the playout bu�er (by one or more

pages), and if there is enough 
redit available

for this. The 
redit is a measure of how far the

bu�er 
an be moved at a given time. This 
on-


ept is des
ribed in more detail below.

If there is enough 
redit, the playout bu�er

is moved immediately. Otherwise, the s
heduler

sets a timer to expire when enough 
redit will

have a

umulated. When the playout bu�er is

moved, the �rst page in it is dropped,
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the re-

maining pages are shifted by one position, and

the new page is requested. If a request for this

page is already in progress, the s
heduler in-

forms the elevator that the request should now

be pro
essed with real-time priority (see se
tion

3.5).

If the playout bu�er has to be moved by sev-

eral pages, the pro
edure is repeated.

Playout points

The playout bu�er \moves" over the �le by re-

moving pages at its left-hand side, and loading

new pages at its right-hand side. As shown in

�gure 10, the movement is 
ontrolled by two

playout points: the appli
ation playout point in-

di
ates the lo
ation after whi
h the appli
ation

7. The playout bu�er, whi
h is organized as a ring

bu�er, only 
ontains pointers to the page stru
tures, so

dropping a page means to release the referen
e.
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Figure 11: Playout bu�er movement is limited by a 
redit that a

umulates at the rate requested by the

appli
ation, and whi
h is spent when the playout bu�er advan
es through the �le.

will a

ess the �le 
ontent. The appli
ation 
an

move this playout point at any time and to any

position.

The se
ond playout point is maintained by the

s
heduler in the kernel. It follows the appli
a-

tion playout point, but always moves forward,

and its average speed does not ex
eed the re-

quested rate.

If both playout points are on the same mem-

ory page, the playout bu�er stops moving. If

the appli
ation moves its playout point outside

the playout bu�er, e.g. be
ause it does a \fast

forward" or be
ause it ex
eeds the read rate, it

loses the real-time guarantees, the kernel play-

out point jumps dire
tly to the lo
ation of the

appli
ation playout point, and the bu�er is re-

�lled at a best-e�ort priority.

Rate 
ontrol

The average rate of movement is limited to

the rate the appli
ation requested: a movement


redit is a

umulated at that rate, and whenever

the playout bu�er moves, some of this 
redit is

spent. If the 
redit is too small, the s
heduler

sets a timer that will expire when the 
redit is

suÆ
ient to move the playout bu�er by at least

one page. This pro
ess is illustrated in �gure 11.

The 
redit serves two purposes: (1) it allows

the s
heduler to handle time with more a

ura
y

than solely relying on timer expiration would,

and (2) it lets the s
heduler 
ompensate for de-

lays between de
iding to initiate a series of read

requests, and the moment when these requests

are a
tually issued.

1 jiffie

Timer latency

Work queue latency

Batch size

1 jiffie

Timer is set

C
re

di
t l

im
it

Maximum delay
between adding
work queue
entry and credit
calculation

Minimum duration
of wait

Maximum delay between
timer tick and addition of
work queue entry

Credit is updated

Figure 12: The limit keeps the s
heduler from a

u-

mulating ex
essive 
redit, while allowing it to 
om-

pensate for the delays o

urring when s
heduling IO

operations.

Sin
e 
redit is a

umulated whenever the

playout window is stopped, an arbitrary amount



of 
redit might be a

umulated, and 
ould then

be used to issue a large number of real-time read

operations, whi
h would disturb overall system

performan
e, and make it impossible to usefully

predi
t delays. Therefore, the maximum 
redit

must be limited to a reasonable value.

As shown in �gure 12, the 
redit 
onsists of

the following parts:

� The 
redit required before the playout win-

dow moves at all. This is simply the bat
h

size, as des
ribed below.

� The a

ura
y of timers. Sin
e the s
heduler

always rounds up to the next higher entire

jiÆe, the maximum ina

ura
y is the timer

resolution, i.e. one jiÆe.

� The delays between nominal timer expira-

tion and the moment when 
redit is used to

initiate IO operations. These delays depend

on how the s
heduler is implemented, and

in
lude { in the 
urrent design { the time

to a
t on timer expiration, plus the time

between enqueuing a work queue entry and

the time it gets exe
utes.

Appli
ations may use a similar algorithm to

time their own playout point movements.

Dimensioning the playout bu�er

The playout bu�er maintained by the s
heduler

absorbs all deviations from an ideal 
onstant-

rate 
ow. In se
tion 2.6, we have already dis-


ussed the bu�ering requirements determined by

the appli
ation. They are shown in the upper

part of �gure 13.
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The lower part of �gure 13 shows the addi-

tional bu�ering needed to 
ompensate for e�e
ts


aused by elements under the responsibility of

the operating system:

� A 
onsiderable amount of time may pass

between the moment, when the s
heduler

should fet
h a new page, and the time when

the request is a
tually enqueued. In the


urrent implementation, this in
ludes the

time until the s
heduler a
tually be
omes

aware that it should issue a new request,

and, sin
e we pro
ess playout bu�er move-

ments through a work queue, the time it

takes until the work queue item is pro-


essed.

� The time the request spends in the elevator

(waiting for other requests to 
omplete

9

),

and then the time it takes for the disk to

pro
ess the request.

Application jitter

Read size or work area

Kernel latency

IO latency

Application−dependent buffering

Operating system and hardware
dependent buffering

Read batching

Figure 13: The playout bu�er of the s
heduler pro-

vides for bu�ering needs resulting from appli
ation

properties and from laten
ies 
aused by the operating

system and the hardware.

� Any bat
hing performed by the s
heduler.

Bat
hing means that the s
heduler does not

load ea
h page immediately when it 
an,

but waits until a 
ertain minimum number

of pages needs to be loaded, and then re-

quests them all at on
e. This way, high-

priority requests interfere less frequently

with lower priority requests, allowing the

latter to bene�t more from the request or-

dering done by the elevator.

When requesting a real-time servi
e, the ap-

pli
ation only spe
i�es its own bu�ering require-

ments. The kernel and the ABISS daemon then

in
rease the bu�er size to in
lude the additional

bu�ering needed for kernel and hardware.

3.3 API example

Communi
ation between the appli
ation and

the ABISS s
heduler is done with an io
tl. To

request an ABISS servi
e on a �le, the appli
a-

tion must �rst open the �le, then �ll in a mes-

sage stru
ture with a s
heduler-spe
i�
 param-

eter blo
k, and �nally issue the io
tl, as shown

in the following skeleton 
ode:

stati
 stru
t abiss_atta
h_msg msg;

stati
 stru
t abiss_s
hed_test_prm prm;

fd = open("name", O_RDONLY);

8. For simpli
ity, we subsume everything related to

non-ideal behaviour under \jitter".

9. This in
ludes all other requests at real-time priority

earlier in the queue, plus a best-e�ort request that may

be exe
uting at that time. On devi
es with a slow trans-

fer rate, the maximum size limit for requests may have to

be lowered to prevent them from taking too mu
h time.



msg.header.type = abiss_atta
h;

msg.s
hed_prm = &prm;

...

if (io
tl(fd, ABISS_IOCTL, &msg) < 0)

/* handle error */;

Typi
ally, the only other 
hange required is to

update the playout point after reading from the

�le. Again, a message stru
ture is used for this

purpose, as shown in the following 
ode frag-

ment:

stati
 stru
t abiss_position_msg msg;

got = read(fd, buffer, BUFFER_SIZE);

msg.header.type = abiss_position;

msg.pos = 0;

msg.when
e = SEEK_CUR;

io
tl(fd, ABISS_IOCTL, &msg);

In this example, the playout point it set to the


urrent �le position (
alled the �le o�set in [2℄).

There is a also a library providing slightly eas-

ier to use wrapper fun
tions for these operations.

3.4 Priorities

The mainstream Linux kernel 
urrently has no

provision for spe
ifying the priority of IO re-

quests. We build partly upon a me
hanism for a

pro
ess-based \IO priority" that was proposed

by Jens Axboe a while ago [4℄, and that is poised

to be added to the Linux kernel [5℄.

Unfortunately, it is not possible to pass priori-

ties dire
tly along with the operations that even-

tually lead to an IO request. Instead, ea
h pro-


ess or thread has its own \IO priority" whi
h

applies to all disk IO operations exe
uting under

this pro
ess.

ABISS uses real-time priorities only indi-

re
tly, in the work queue thread that prefet
hes

pages. We therefore set the IO priority of that

kernel thread to the real-time priority, before it

starts prefet
hing pages, and return it to its pre-

vious value when done.

Independently from this, pro
esses 
an set

their own IO priority for any operations not in-

volving ABISS.

3.5 Upgrades

When the s
heduler tries to prefet
h a page that

has already been requested, that request may be

at a lower priority and may have to be upgraded.

This 
an happen if the appli
ation has slightly

ex
eeded its read rate, and attempted to a

ess a

page beyond the playout bu�er a moment before

the playout bu�er shifts to 
over this page, but

also if a di�erent appli
ation is reading the �le

at non-real-time priority.

When upgrading a page, the s
heduler tells

the elevator to look for the request that in
ludes

the page, and to move that request to the 
or-

responding higher priority queue. If the request


overs pages with di�erent priorities, the highest

priority is used.
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3.6 Elevator

The ABISS elevator provides the infrastru
ture

for enfor
ing IO priorities. Besides implement-

ing priorities, it di�ers in a few other regards

from the regular elevators in the Linux kernel,

i.e. deadline, anti
ipatory, and CFQ (Complete

Fairness Queuing):

� It reserves spa
e in the request queue for

high-priority requests, so that they do not

have to 
ompete for request queue slots on

equal terms with lower-priority requests.

� Barriers are handled in a way that is rela-

tively unobtrusive for read operations. As

a wel
ome side e�e
t, request ordering se-

manti
s also be
ome more intuitive.

11

� Sin
e we expe
t that the ABISS elevator

may be used with 
omparably large request

queue sizes, it serializes requests before a

barrier at O(p) instead of the O(n) required

by the regular elevators, for p priorities and

n pending requests.

10. This may lead to upgrading a possibly large number

of pages that should not (or not yet) be retrieved at

real-time priority, and might 
ause the real-time priority

queue to grow su
h that other deadlines will be missed.

Sin
e this extension does not 
ause long-range seeks, the

impa
t should normally be low, and the ABISS daemon


an 
ompensate by slightly enlarging the playout bu�ers

of �les open for real-time reading. On slow disks, one

may also have to adjust the maximum request size.

Doing the opposite, i.e. keeping the request at a lower

priority until all pages have been upgraded, yields even

less predi
table e�e
ts, and is likely to 
ause more pro-

noun
ed deadline slips.

The 
orre
t solution would be to split this request into

a high and one or two low priority parts. Unfortunately,

this 
on
i
ts somewhat with the design of the elevator

subsystem in the Linux kernel.

Combined requests, as des
ribed in the following se
-

tion, no longer take part in the priority s
heme, and are

never upgraded.

11. There is some 
ontroversy over whether making or-

dering semanti
s in general more predi
table is truly de-

sirable, or whether this is a misguided attempt at imple-

menting semanti
s that 
annot be guaranteed in other

s
enarios anyway. Fortunately, the ABISS elevator 
an

easily be 
hanged to implement either behaviour.



The ABISS elevator is mainly meant for ex-

ploring performan
e and implementation issues

related to prioritized IO, and it 
urrently does

not aim to o�er balan
ed performan
e for 
om-

plex loads, like the anti
ipatory or CFQ eleva-

tors do.

In the future, we will try to merge the fun
-

tionality of the ABISS elevator that is not spe-


i�
 to ABISS (that is, almost everything) into

the CFQ elevator.

Enqueuing requests

Figure 14 shows the data stru
tures in the eleva-

tor. It is divided into two areas, one for reads,

the other for writes and requests with spe
ial

ordering requirements. In ea
h area, there are

eight priority queues { one for ea
h priority.

RB tree
by start sector

FIFO queue

LIFO queue

Sort queue

Current

Overlaps
Cursor

Priority queues (8)

Footprint

Areas (2, read and write)

Elevator

Front

Back

Sort 3

2

1

Figure 14: Data stru
tures in the ABISS elevator.

Regular requests are added to the sort queue,

a linear list, whi
h is ordered by the start se
-

tors of the requests in it. The ordering is

a

omplished through a red-bla
k tree. Re-

quests whi
h may not be reordered with respe
t

to other requests are pla
ed in either a FIFO

queue,

12

or the LIFO queue. Requests that are

requeued by a blo
k devi
e are added at the head

of the respe
tive FIFO queue.

������ ����

No overlap

Overlap

Footprint

Combined (hidden)

����������

�����
�����
�����
����� ����

����
����
����
����

��������
��
��
��
��

Original footprint

O
ld requests

No overlap

Overlap

New request

Combined request

Resulting footprint

Block number

Figure 15: The \footprint" of a request is the range

of se
tors 
overed by all the overlapping requests it

is 
ombined with.

Retrieving requests

When looking for the next request, the LIFO

queue has priority over anything else. If the

LIFO queue is empty, the FIFO queue in the


urrently a
tive area is sear
hed.

13

Finally, if

also the FIFO queue was empty, the priority

queues of the 
urrently a
tive area are sear
hed,

from highest to lowest.

When retrieving the next request from a sort

queue, the request pointed to by the so-
alled


ursor is taken. The 
ursor moves from requests

beginning at low se
tors towards those at higher

se
tors. When rea
hing the last request in the

sort queue, it wraps ba
k to the beginning. This

way, ea
h priority implements a single-sweep el-

evator.

The elevator alternates between reading and

writing. Ea
h phase is given a 
ertain amount

of time.

14

A phase ends if either that amount of

12. Usually, all requests going to a FIFO queue go to

the write area. The only ex
eption to this are fully over-

lapped read requests, whi
h, after being retrieved from

the sort queue, go to the FIFO queue of the read area

instead (see below).

13. Ex
ept if the request that was returned last has not

yet been removed from the queue, and no other request

was enqueued in the LIFO queue. This me
hanism is

there, be
ause an elevator must 
onsistently return the

same \
urrent" request until that request is expli
itly

removed.

14. At the time of writing, we use 2 se
onds for the read

phase, and 30 ms for the write phase.



time has passed, or if there are no more requests

of the 
orresponding type. The phase 
hange is

postponed if the other area 
ontains no requests.

Barrier semanti
s

Barriers and overlapping requests require spe
ial

treatment. In the regular elevators on Linux,

barriers separate all requests before and after

them, and the elevators give no guarantees with

respe
t to the ordering of overlapping requests.

While barriers are rarely used, delaying new

requests until all pending requests have been

pro
essed may 
ause signi�
ant delays also for

higher-priority requests.

Fortunately, it makes no di�eren
e if we re-

order read requests even a
ross barriers, as long

as they are not moved beyond write requests

a

essing the same disk se
tors. The ABISS el-

evator therefore honors barriers only for write

requests, and ensures that read requests never


ross write requests whi
h whom they overlap.

For simpli
ity, we always avoid reordering write

requests that overlap with other write requests.

This has the added bene�t that data read and

written with the ABISS elevator is exa
tly the

same as if a simple FIFO was used.
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����
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Combined request
Original new request

"Head" request

Figure 16: The resulting request 
ombines all re-

quests overlapping with the original new request.

Overlapping requests

Overlapping requests 
an only o

ur in 
om-

bination with operations that bypass the page


a
he, i.e. dire
t reads and writes by �le system

drivers, or �les opened with O_DIRECT. Overlap-

ping parts of transfers going through the page


a
he only 
ause disk IO on
e, and are resolved

within the 
a
he with FIFO semanti
s.

New write requests are 
he
ked for overlaps

with existing read and write requests, while new

read requests are only 
he
ked against existing

write requests. If overlaps are found, all over-

lapping requests are 
ombined in a list su
h that

the existing requests appear in an arbitrary or-

der, followed by the new request. Only the �rst

request of this list is visible in the sort queue and

all the trees. In order to a

ount for the requests

hidden behind this �rst request, we introdu
e

the 
on
ept of a request's footprint, whi
h is the

range of se
tors used when looking for overlaps.

When 
ombining requests, the footprint of the

�rst request is in
reased a

ordingly. This pro-


edure is illustrated in �gure 15.

15

If any of the overlapping requests are already


ombined requests, all its 
omponents are added

as individual requests (i.e. there are no 
om-

bined requests nested inside other 
ombined re-

quests), but they retain their relative order.

Figure 16 shows a possible result of this op-

eration. Note that the new request that 
aused

the overlaps is last in the 
ombined request.

��
��
��
��

����

Sort queue

FIFO queue

First request becomes "current"

Overlapping requests are placed
in the FIFO queue

Figure 17: Combined requests are split when retriev-

ing them.

Overlapping requests are dete
ted by looking

up the range of se
tors they 
over in a radix pri-

ority sear
h tree maintained at ea
h area. This

is the dark tree looming in the ba
kground on

15. We are exer
ising a little artisti
 freedom here: the


on�guration in this example 
ould not o

ur in real life:

Overlapping requests like the two on the left would al-

ways be 
ombined if they were in a write area, so this

must be a read area. However, in a read area, there

would be no reason to 
ombine the middle request of the


ombined request.

Requests that 
over an identi
al range of se
tors, like

the �rst and the last request in the 
ombined request,

would be 
ombined even in a read area, be
ause the

sear
h tree we use 
annot a

ommodate identi
al entries.

Therefore, in that ex
eptional 
ase, the 
ombined request

stays in the read area.
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Figure 18: Histogram of the time between issuing a read() 
all and obtaining the data for the ABISS elevator

in RT and BE mode, and for the other Linux elevators. The measurement was done with four real-time

streams reading at 1 MB/s and a 
ontinuous best-e�ort read of a large �le in the ba
kground. In the 
ase

of the real-time ABISS elevator the maximum delay is around 8 ms. The bat
h size for this measurement

was 20 pages.

�gure 14. After 
ombining requests, the result is

enqueued in the write area, sin
e the 
ombined

request 
ontains at least one write.

When retrieving a 
ombined request, the

\head" be
omes the next (
urrent) request,

while the rest is separated and pla
ed in the

FIFO queue. This is shown in �gure 17.

The stru
ture of the ABISS elevator also al-

lows barriers to be implemented very eÆ
iently:

sin
e they only a�e
t the write area, it is suf-

�
ient to add the 
ontents of all sort queues to

the FIFO queue, whi
h is an O(1) operation for

ea
h queue. Be
ause this empties all trees in

this area, their elements do not need to be re-

moved individually, but the trees 
an simply be

initialized to their empty state.

3.7 Known problems

A general and diÆ
ult to solve problem are de-

lays that may appear anywhere along the 
ode

paths involved in pro
essing IO requests. In par-

ti
ular, memory management 
an trigger s
ans

for free pages, with a signi�
ant run time. Our


urrent work-around is to apply generous bu�er-

ing.

Another (minor) problem of best-e�ort prior-

ities is that requests 
annot be upgraded, be-


ause ABISS is not parti
ipating in request gen-

eration.

Real-time reads 
urrently begin as soon as the

bat
h size is rea
hed. This means that the time

intervals for best-e�ort a�orded by these bat
hes

get fragmented into smaller intervals if there is

more than one real-time reader. This defeats

the purpose of read bat
hing.

Last but not least, ABISS presently provides

no guarantees for writes. There is experimental

infrastru
ture in pla
e that allows ABISS to 
on-

trol where free spa
e is allo
ated, and that also

helps to eliminate meta-data a

esses (whi
h, if

they are reads, may blo
k).

4 Measurements

In this se
tion we will 
ompare the performan
e

of ABISS to that of the other Linux elevators:

Anti
ipatory (the default in the Linux 2.6.7 ker-



Elevator Foreground readers Ba
kground reader [MB/s℄ Playout bu�er

with 1 foreground with 4 foreground

ABISS RT, 10 page bat
h 7.7 0.27 564 kB

RT, 20 page bat
h 8.0 2.5 564 kB

RT, 40 page bat
h 8.7 4.0 564 kB

RT, 80 page bat
h 9.4 5.8 564 kB

RT, 160 page bat
h 9.5 6.6 1064 kB

BE 7.7 1.5 |

Anti
ipatory 7.8 2.7 |

Deadline 7.9 1.8 |

CFQ 7.9 1.8 |

Noop 7.9 2.0 |

Table 1: Data rate obtained by a \ba
kground" best-e�ort reader against one and four 
on
urrent \fore-

ground" best-e�ort or real-time readers.

nel), Completely Fair Queuing (CFQ), Deadline

and Noop. The measurements were done on a

system with 128 MB of memory, and a Trans-

meta Crusoe TM5800 [6℄ CPU, running at 800

MHz. Two hard disks were 
onne
ted to the

system: the primary /dev/hda, 
ontaining the

boot and system partitions was a 2.5 in
h 60

GB hard disk, the se
ondary hard disk /dev/hd


was a 2.5 in
h 20 GB 4200 rpm Hita
hi Travel-

star hard disk [7℄, with only one partition.

Two tests were performed in whi
h one or four

simultaneous streams, reading di�erent 105 MB

�les on the se
ondary hard disk, were started.

The streams were started with the rdrt tool,

part of the ABISS distribution, whi
h reads a


ertain �le at a prede�ned data rate. The data

were read in blo
ks of 64 kB, at a rate of 1 MB/s.

The playout bu�er size was set to 564 kB. The

rdrt tool allows logging the delay between issu-

ing a read 
ommand and the arrival of the data

in the appli
ation. In parallel to these real-time

streams, whi
h we shall 
all our foreground read-

ers, a ba
kground best-e�ort read stream on a

�fth large �le was started by running a program

that 
ontinuously reads a 175 MB �le in 
hunks

of 128 kB, using fread().

Several measurements were done: one in

whi
h the ABISS real-time servi
e was used,

one in whi
h the ABISS elevator was used, but

only for best-e�ort (default priorities for both

the four foreground streams as well as for the

ba
kground reader). In the other measurements

the other Linux elevators were used. For the

measurements with the ABISS real-time servi
e

several bat
h sizes were tried: 10, 20, 40, 80 and

160 pages (one page is 4 kB).

The results of the measurements with four

real-time streams are shown as a histogram in

�gure 18. For a 
ertain delay time on the x axis

the number of times this delay o

urred is on the

y axis. The results of all four real-time streams

were summed.

The bene�ts of using real-time ABISS 
an be


learly seen; all delays are smaller than 8 ms

whi
h means that appli
ations 
an do with a

very small bu�er. In the 
ase of best-e�ort traf-

�
 the delays that o

ur when reading 
an be up

to a se
ond, whi
h implies for this 
ase that the

appli
ations will need a bu�er of at least 1 MB

(and will also in
ur a laten
y to user input of at

least 1 se
ond). Figure 18 shows the result with

a bat
h size of 20 pages. In other measurements

sometimes one or two reads were seen with a de-

lay up to 25 ms. These have not been explained

yet.

It is also interesting to see what data rate the

best-e�ort reader 
ould obtain. These rates are

listed in table 1. It 
an 
learly be seen that

the rate is strongly dependent on the bat
h size.

However, already with a 40 page bat
h size, the

impa
t of the real-time readers on the ba
k-

ground reader is lower than if using the same

number of best-e�ort readers. As expe
ted, the

other elevators perform better than the ABISS

elevator under a pure best-e�ort load, but still

show degradation well beyond that experien
ed

with properly tuned ABISS real-time readers.

5 Con
lusions and future

work

In this paper we present our work done on real-

time �le I/O on hard disks. The ABISS frame-

work allows for di�erent servi
es that 
an be im-

plemented in modules that 
an be 
hanged at



run time. In this paper we have shown results

with a performan
e s
heduler and 
ompared to

results obtained with the standard best-e�ort

way of s
heduling I/O. By using ABISS the sys-

tem is able to guarantee a 
ertain bandwidth to

an appli
ation, without the need for large mem-

ory bu�ers on the appli
ation side.

Writing with real-time guarantees is not yet

supported. The main 
hallenge in writing large

�les is to prevent fragmentation of the �les. For

instan
e, in the 
urrent �le systems writing mul-

tiple �les simultaneously will result in relatively

small, interleaved areas on the hard disk. To


ir
umvent this, work has to be done on the al-

lo
ator, the entity that assigns disk blo
ks to

�les that are written.

Future work will also in
lude di�erent ABISS

servi
es. For instan
e, for portable systems

power is very important. An ABISS s
heduler

might allow for power management thus extend-

ing the battery life of a portable devi
e.

Furthermore, sin
e there is general inter-

est in fun
tionality to let also the mainstream

kernel di�erentiate IO servi
es, we will merge

me
hanisms that have been su

essfully used in

ABISS, and submit them for in
lusion into the

2.6 or 2.7 kernel.
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