kboot — A Boot Loader Based on Kexec

Werner Almesberger
werner@almesberger.net

September 26, 2005

Abstract

Compared to the “consoles” found on tradi-
tional Unix workstations and mini-computers,
the Linux boot process is feature-poor, and the
addition of new functionality to boot loaders
often results in massive code duplication. With
the availability of kexec, this situation can be
improved.

kboot is a proof-of-concept implementation
of a Linux boot loader based on kexec. kboot
uses a boot loader like LILO or GRUB to load
a regular Linux kernel as its first stage. Then,
the full capabilities of the kernel can be used
to locate and to access the kernel to be booted,
perform limited diagnostics and repair, etc.

1 Oh no, not another boot
loader !

There is already no shortage of boot loaders for
Linux, so why another one 7 The motivation for
writing kboot is simply that the boot process
of Linux is still not as good as it could be, and
that recent technological advances have made
it comparably easy to do better.

Looking at traditional Unix servers and work-
stations, one often finds very powerful boot en-
vironments, offering a broad choice of possible
sources for the kernel and other system files to
load. It is also quite common to find various
tools for hardware diagnosis and system soft-
ware repair. On Linux, many boot loaders are
much more limited than this.

Even boot loaders that provide several of
these advanced features, like GRUB, suffer from
the problem that they need to replicate func-
tionality or at least code found elsewhere, which
creates an ever increasing maintenance burden.
Similarly, any drivers or protocols the boot
loader incorporates, will have to be maintained
in its context.

New boot loader functionality is not only

required because administrators demand more
powerful tools, but also because technological
progress leads to more and more complex mech-
anisms for accessing storage and other devices,
which a boot loader eventually should be able
to support.

It is easy to see that a regular Linux system
happens to support a superset of all the func-
tionality described above.

With the addition of the kexec system call to
the 2.6.13 mainline Linux kernel, we now have
an instrument that allows us to build boot load-
ers with a fully featured Linux system, tailored
according to needs and resources.

Kboot is a proof-of-concept implementation
of such a boot loader. It demonstrates that new
functionality can be merged from the vast code
base available for Linux with great ease, and
without incurring any significant maintenance
overhead. This way, it can also serve as a plat-
form for the development of new boot concepts.

The project’s home page is at http://
kboot.sourceforge.net/

The remainder of this section gives a high-
level view of the role of a boot loader in general,
and what kboot aims to accomplish. Additional
technical details about the boot process, includ-
ing tasks performed by the Linux kernel when
bringing up user space, can be found in [1].

Section 2 briefly describes Eric Biederman’s
kexec [2], which plays a key role in the operation
of kboot. Section 3 introduces kboot proper,
explains its structure, and discusses its applica-
tion. Section 4 gives an outlook on future work,
and we conclude with section 5.

1.1 What a boot loader does

After being loaded by the system’s firmware, a
boot loader spends a few moments making it-
self comfortable on the system. This includes
loading additional parts, moving itself to other
memory regions, and establishing access to de-
vices.

Hard- and firmware

New device drivers
New protocols

J

|

Boot
process

Administration

New file systems
Combination of services

[

~ ™

User experience

Convenience
Compatible "look and feel"

[J

Figure 1: The boot process exists in a world full of changes and faces requirements from many
directions. All this leads to the need to continuously grow in functionality.

After that, it typically tries to interact with
the user. This interaction can range from
checking whether the user is trying to get the
boot loader’s attention by pressing some key,
through a command line or a simple full-screen
menu, to a lavish graphical user interface.

Whatever the interface may be, in the end
its main purpose is to allow the user to select,
perhaps along with some other options, which
operating system or kernel will be booted. Once
this choice is made, the boot loader proceeds to
load the corresponding data into memory, does
some additional setup, e.g., to pass parameters
to the operating system it is booting, and trans-
fers control to the entry point of the code it has
loaded.

In the case of Linux, two items deserve special
mention: the boot parameter line and the initial
RAM disk.

The boot parameter line was at its incep-
tion intended primarily as a means for passing
a “boot into single user mode” flag to the ker-
nel, but this got a little out of hand, and it is
nowadays often used to pass dozens if not hun-
dreds of bytes of essential configuration data
to the kernel, such as the location of the root
file system, instructions for how certain drivers
should initialize themselves (e.g., whether it is
safe for the IDE driver to try to use DMA or
not), and the selection of items included in a
generic kernel (e.g., disabling ACPI support).

Since a kernel would often not even boot
without the correct set of boot parameters, a
boot loader must store them in its configura-
tion, and pass them to the kernel without re-
quiring user action. At the same time, users
should of course be able to manually set and

override such parameters.

The initial RAM disk (initrd), which at the
time of writing is gradually being replaced by
the initial RAM file system (initramfs), pro-
vides an early user space, which is put into
memory by the boot loader, and is thus avail-
able even before the kernel is fully capable to
interact with its surroundings. This early user
space is used for extended setup operations,
such as the loading of driver modules.

Given that the use of initrd is an integral
part of many Linux distributions, any general-
purpose Linux boot loader must support this
functionality.

1.2 What a boot loader should be
like

A boot loader has much in common with the
operating system it is loading: it shares the
same hardware, exists in the same administra-
tive context, and is seen by the same users.
From all these directions originate requirements
on the boot process, as illustrated in figure 1.

The boot loader has to be able to access at
least the hardware that leads to the locations
from which data has to be loaded. This does
not only include physical resources, but also
any protocols that are used to communicate
with devices. Firmware sometimes provides a
set of functions to perform such accesses, but
new hardware or protocol extensions often re-
quire support that goes beyond this.

Above basic access mechanisms lies the do-
main of services the administrator can combine
more or less freely. This begins with file sys-
tem formats, and gets particularly interesting

Kernel memory

Kernel memory

(before rebooting) (while and after rebooting)
Copy file(s) through user space
into kernel memor =
Y » OO0 = Order pages
=R ‘
1 2 = \
Run kexec reboot Kernd] \ Kernel
code code ‘ 2 code
kboot -f file Jump to kernel setup

Figure 2: Simplified boot sequence of kexec.

when using networks. For example, there is
nothing inherently wrong in wanting to boot
kernels that happen to be stored in RPM files
on an NFS server, which is reached through an
IPsec link.

Last but not least, whenever users have to
perform non-trivial tasks with the boot loader,
they will prefer a context similar to what they
are used to from normal interaction with the
system. For instance, path names starting at
the root of a file system hierarchy tend to be
easier to remember than device-local names
prefixed with a disk and partition number.

In addition to all this, it is often desirable if
small repair work on an unbootable system can
be done from the boot loader, without having
to find or prepare a system recovery medium,
or similar.

The bottom line is that a general-purpose
boot loader will always grow in functionality
along the lines of what the full operating sys-
tem can support.

1.3 The story so far

The two principal boot loaders for Linux on the
1386 platform, LILO and GRUB, illustrate this
trend nicely.

LILO was designed with the goal in mind of
being able to load kernels from any file system
the kernel may support. Other functionality
has been added over time, but growth has been
limited by the author’s choice of implementing
the entire boot loader in assembler.!

GRUB appeared several years later and
was written in C from the beginning, which
helped it to absorb additional functionality
more quickly. For instance, GRUB can directly
read a large number of different file system for-
mats, without having to rely on external help,

such as the map file used by LILO. GRUB also
offers limited networking support.

Unfortunately, GRUB still requires that any
new functionality, be it drivers, file systems, file
formats, network protocols, or anything else, is
integrated into GRUB’s own environment. This
somewhat slows initial incorporation of new fea-
tures, and, worse yet, leads to an increasing
amount of code that has to be maintained in
parallel with its counterpart in regular Linux.

In an ideal boot loader, the difference be-
tween the environment found on a regular Linux
system and that in the boot loader would be
reduced to a point where integration of new
features, and their subsequent maintenance, is
trivial. Furthermore, reducing the barrier for
working on the boot loader should also encour-
age customization for specific environments,
and more experimental uses.

The author has proposed the use of the Linux
kernel as the main element of a boot loader in
[1]. Since then, five years have passed, some of
the technology has first changed, then matured,
and with the integration of the key element re-
quired for all this into the mainstream kernel,
work on this new kind of boot loader could start
in earnest.

1. LILO was written in 1992. At that time, 32-bit real
mode of the 1386 processor was not generally known,
and the author therefore had to choose between pro-
gramming in the 16-bit mode in which the 1386 starts,
or implementing a fully-featured 32-bit protected mode
environment, complete with real-mode callbacks to in-
voke BIOS functions. After choosing the less intrusive
of the two approaches, there was the problem that no
suitable and reasonably widely deployed free C compiler
was available. Hence the decision to write LILO in as-
sembler.

2 Booting kernels with

kexec

One prediction in [1] came true almost im-
mediately, namely that major changes to the
bootimg mechanism described there were quite
probable: when Eric Biederman released kexec,
it swiftly replaced bootimg, being technologi-
cally superior and also better maintained.

Unfortunately, adoption of kexec into the
mainstream kernel took much longer than any-
one expected, in part also because it underwent
design changes to better support the very ele-
gant kdump crash dump mechanism [3], and it
was only with the 2.6.13 kernel that it was fi-
nally accepted.

2.1 Operation

This is a brief overview of the fundamental as-
pects of how kexec operates. More details can
be found in [4], [5], and also [3].

As shown in figure 2, the user space tool
kexec first loads the code of the new kernel plus
any additional data, such as an initial RAM
disk, into user space memory, and then invokes
the kexec_load system call to copy it into ker-
nel memory (1). During the loading, the user
space tool can also add or omit data (e.g., setup
code), and perform format conversions (e.g.,
when reading from an ELF file).

After that, a reboot system call is made to
boot the new kernel (2). The reboot code tries
to shut down all devices, such that they are in
a defined and inactive state, from which they
can be instantly reactivated after the reboot.

Since data pages containing the new kernel
have been loaded to arbitrary physical locations
and could not occupy the same space as the
code of the old kernel before the reboot anyway,
they have to be moved to their final destination

Finally, the reboot code jumps to the en-
try point of the setup code of the new kernel.
That kernel then goes through its initialization,
brings up drivers, etc.

2.2 Debugging

The weak spot of kexec are the drivers: some
drivers may simply ignore the request to shut
down, others may be overzealous, and deac-
tivate the device in question completely, and
some may leave the device in a state from which
it cannot be brought back to life, be this either

kboot shell
& o | _
BusyBox s |8 -§_ 0|
(sh, cat, mount, ...) | & Z 8 8
(7]
uClibc
Lean kernel

Figure 3: The software stack of the kboot envi-
ronment.

because the state itself is incorrect or irrecov-
erable, or because the driver simply does not
know how to resume from this specific state.

Many of these problems have not become vis-
ible yet, because those drivers have not been
subjected to this specific shutdown and reboot
sequence so far.

The developers of kexec and kdump have
made a great effort to make kexec work with a
large set of hardware, but given the sheer num-
ber of drivers in the kernel and also in parallel
trees, there are doubtlessly many more prob-
lems still awaiting discovery.

Since kboot is the first application of kexec
that should attract interest from more than a
relatively small group of developers, many of
the expected driver conflicts will surface in the
form of boot failures occurring under kboot.

3 Putting it all together

Kboot bundles the components needed for a
boot loader, and provides the “glue” to hold
them together. For this, it needs very little
code: only roughly 3’000 lines, as of version
4. Already LILO exceeds this by one order of
magnitude, and GRUB further doubles LILO’s
figure.?

Of course, during its build process, kboot
pulls in various large packages, among them the
entire GCC tool chain, a C library, BusyBox,
assorted other utilities, and the Linux kernel it-
self. In this regard, kboot resembles more a dis-
tribution like Gentoo or OpenEmbedded, which

2. These numbers were obtained by quite unscientifi-
cally running we -1 on a somewhat arbitrary set of the
files in the respective source trees.

Firmware
\4 Reboot to
\ Komd
initramfs
N\ kexec

Main system
("booted environment™)

Figure 4: The boot sequence when using kboot.

consist mainly of meta-information about pack-
ages maintained by other parties.

3.1 The boot environment

Figure 3 shows the software packages that con-
stitute the kboot environment. Its basis is a
Linux kernel. This kernel only needs to support
the devices, file systems, and protocols that will
be used by kboot, and can therefore be consid-
erably smaller than a fully-featured production
kernel for the same machine.

In order to save space, kboot uses uClibc [6]
instead of the much larger glibc. Unfortunately,
properly supporting a library different from the
one on the host system requires building a ded-
icated version of GCC. Since uClibc is sensitive
to the compiler version, kboot also builds a lo-
cal copy of GCC for the host. To be on the safe
side, it also builds binutils.

After this tour de force, kboot builds the
applications for its user space, which include
BusyBox [7], udev [8], the kexec tools [2], and
dropbear [9]. BusyBox provides a great many
common programs, ranging from a Bourne
shell, through system tools like “mount”, to a
complete set of networking utilities, including
“wget” and a DHCP client. Udev is responsi-
ble for the creation of device files in /dev. It
is a user space replacement for the kernel-based
devfs. The kexec tools provide the user space
interface to kexec.

Last but not least, dropbear, an SSH server
and client package, is included to demonstrate
the flexibility afforded by this design. This
also offers a simple remote access to the boot
prompt, without the need to set up a serial con-

sole for just this purpose.

3.2 The boot sequence

The boot sequence, shown in figure 4, is as fol-
lows: first, the firmware loads and starts the
first-stage boot loader. This would typically be
a program like GRUB or LILO, but it could also
be something more specialized, e.g., a loader for
on-board Flash memory. This boot loader then
immediately proceeds to load kboot’s Linux
kernel and kboot’s initramfs.

The kernel goes through the usual initializa-
tion and then starts the kboot shell, which up-
dates its configuration files (see section 3.5),
may bring up networking, and then interacts
with the user.

If the user chooses, either actively or through
a timeout, to start a Linux system, kboot then
uses kexec to load the kernel and maybe also an
initial RAM disk.

Although not yet implemented at the time of
writing, kboot will also be able to boot legacy
operating systems. The plan is to initially avoid
the quagmire of restoring the firmware environ-
ment to the point that the system can be booted
from it, but to hand the boot request back to
the first stage boot loader (e.g., with 1ilo -R
or grub-set-default), and to reboot through
the firmware.

3.3 The boot shell

At the time of writing, the boot shell is fairly
simple. After initializing the boot environment,
it offers a command line with editing, command
and file name completion, and a history func-
tion for the current session.

The following types of items can be entered:

e Names of variables containing a command.
These variables are usually defined in the
kboot configuration file, but can also be set
during a kboot session.> The variable is
expanded, and the shell then processes the
command. This is a slight generalization of
the 1label in LILO, or the title in GRUB.

e The path to a file containing a bootable
kernel. Path names are generalized in
kboot, and also allow direct access to de-
vices and some network resources. They

3. In the latter case, they are lost when the session
ends.

Syntax Example Description

variable my_kernel Command stored in a variable

/ path /boot/bzImage-2.6.13.2 Absolute path in booted environment
//path cat //etc/fstab Absolute path in kboot environment
path cd linux-2.6.14 Relative path in current environment
device hda7 Device containing a boot sector
/dev/ device /dev/hda7 Device file of device with boot sector

device: / path
device: path
/dev/device: / path
/dev/device: path
host: /path
http://host/path
ftp://host/path

hdal:/bzImage
hdal:bzImage
/dev/sda6:/foo/bar
/dev/sda6:foo/bar

http://server/foo
ftp://server/foo/bar

server:/home/k/bzImage-a

File or directory on a device
(implicit /dev/)

File or directory on a device
(explicit /dev/)

File or directory on an NFS server

File on an HTTP server

File on an FTP server

Table 1: Types of path names recognized by kboot.

are described in more detail in the next sec-
tion. When such a path name is entered,
kboot tries to boot the file through kexec.

e The name of a block device containing the
boot sector of a legacy operating system, or
the path to the corresponding device file.

e An internal command of the kboot shell.
It currently supports cd and pwd, with the
usual semantics.

e A shell command. The kboot shell per-
forms path name substitution, and then
runs the command. If the command uses
an executable from the booted environ-
ment, it is run with chroot, since the
shared libraries available in the kboot envi-
ronment are almost certainly incompatible
with the expectations of the executable.

With the exception of a few helper programs,
like the command line editor, the kboot shell is
implemented as a shell script.

3.4 Generalized path names

Kboot automatically mounts file systems of
the booted environment, on explicitly specified
block devices, and — if networking is enabled
— also from NFS servers. Furthermore, it can
copy and then boot files from HTTP and FTP
servers.

For all this, it uses a generalized path name
syntax that reflects the most common forms of
specifying the respective resources. E.g., for
NFS, the host: path syntax is used, for HTTP, it
is a URL, and paths on the booted environment

look just like normal Unix path names. Table
1 shows the various forms of path names.

Absolute paths in the kboot environment are
an exception: they begin with two slashes in-
stead of one.

We currently assume that there is one princi-
pal booted system environment, which defines
the “normal” file system hierarchy on the ma-
chine in question. Support for systems with
multiple booted environments is planned for fu-
ture versions of kboot.

3.5 Configuration files

When kboot starts, it only has access to the
configuration files stored in its initramfs. These
were gathered at build time, either from the
user (who placed them in kboot’s config/ di-
rectory), or from the current configuration of
the build host.

This set of files includes kboot’s own con-
figuration /etc/kboot.conf, /etc/fstab, and
/etc/hosts. The kboot build process also adds
a file /etc/kboot-features containing set-
tings needed for the initialization of the kboot
shell.

Kboot can now either use these files, or it
can, at the user’s discretion, try to mount the
file system containing the /etc directory of the
booted environment, and obtain more recent
copies of them.

The decision of whether kboot will use its
own copies, or attempt an update first, is made
at build time. It can be superseded at boot time
by passing the kernel parameter kboot=1local.

kboot . conf
/ etc/fstab |Buildenvironment
/etcl/ hosts

Copy latest Mount /etc

versions

Booted
environment

kboot . conf
fstab
host s

Figure 5: Configuration files used by kboot.

3.6 When not to use kboot

While kboot it designed to be a flexible and
extensible solution, there are areas where this
type of boot loader architecture does not fit.

If only very little persistent storage is avail-
able, which is a common situation in small em-
bedded systems, or if large enough storage de-
vices would be available, but cannot be made
an integral part of the boot process, e.g., re-
movable or unreliable media, only a boot loader
optimized for tiny size may be suitable.

Similarly, if boot time is critical, the time
spent loading and initializing an extra kernel
may be too much. The boot time of regu-
lar desktop or server type machines already
greatly exceeds the minimum boot time of a
kernel, which embedded system developers aim
to bring well below one second [10], so loading
another kernel does not add significant over-
head, particularly if the streamlining proposed
below is applied.

Finally, the large hidden code base of kboot
is unsuitable if high demands on system relia-
bility, at least until the point when the kernel
is loaded, require that the number of software
components be kept to a minimum.

3.7 Extending kboot

The most important aspect of kboot is not the
set of features it already offers, but that it
makes it easy to add new ones.

New device drivers, low-level protocols (e.g.,
USB), file systems, network protocols, etc., are
usually directly supported by the kernel, and
need no or only little additional support from

user space. So kboot can be brought up to date
with the state of the art by a simple kernel up-
grade.

Most of the basic system software runs out
of the box on virtually all platforms supported
by Linux, and particularly distributions for em-
bedded systems provide patches that help with
the occasional compatibility glitches. They
also maintain compact alternatives to packages
where size may be an issue.

Similarly, given that kboot basically provides
a regular Linux user space, the addition of new
ornaments and improvements to the user inter-
face, which is an area with a continuous demand
for development, should be easy.

When porting kboot to a new platform, the
foremost — and also technically most demand-
ing — issue is getting kexec to run. Once this is
accomplished, interaction with the boot loader
has to be adapted, if such interaction is needed.
Finally, any administrative tools that are spe-
cific to this platform need to be added to the
kboot environment.

4 Future work

At the time of writing, kboot is still a very
young program, and has only been tested by
a small number of people. As more user feed-
back arrives, new lines of development will
open. This section gives an overview of cur-
rently planned activities and improvements.

4.1 Reducing kernel delays

The Linux kernel spends a fair amount of time
looking for devices. In particular, IDE or SCSI
bus scans can try the patience of the user, be-
cause they repeat similar scans already done by
the firmware. The use of kboot now adds an-
other round of the same.

A straightforward mechanism that should
help to alleviate such delays would be to predict
their outcome, and to stop the scan as soon as
the list of discovered devices matches the pre-
diction. Such a prediction could be made by
kboot, based on information obtained from the
kernel it is running under, and be passed as a
boot parameter to be interpreted by the kernel
being booted.

Once this is in place, one could also envision
configuring such a prediction at the first stage
boot loader, and passing it directly to the first
kernel. This way, slow device scans that are

known to always yield the same result could be
completely avoided.

4.2 Using a real distribution

The extensibility of kboot can be further in-
creased by replacing its build process, which is
very similar to that of buildroot [11], with the
use of a modular distribution with a large set
of maintained packages. In particular OpenEm-
bedded [12] looks very promising.

The reasons for not reusing an existing build
process already from the beginning were mainly
that kboot needs tight control over the con-
figuration process (to reuse kernel configura-
tion, and to propagate information from there
to other components) and package versions (in
order to know what users will actually be build-
ing), the sometimes large set of prerequisites,
and also problems encountered during trials.

4.3 Modular configuration

Adding new functionality to the kboot environ-
ment usually requires an extension of the build
process and changes to the kboot shell. For
common tasks, such as the addition of a new
type of path names, it would be desirable to be
able to just drop a small description file into the
build system, which would then interface with
the rest of kboot over a well-defined interface.

Regarding modules: at the time of writing,
kboot, does not support loadable kernel mod-
ules.

5 Conclusions

Kboot shows that a versatile boot loader can be
built with relative little effort, if using a Linux
kernel supporting kexec and a set of programs
designed with the space constraints of embed-
ded systems in mind.

By making it considerably easier to synchro-
nize the boot process with regular Linux devel-
opment, this kind of boot loader architecture
should facilitate more timely support for new
functionality, and encourage developers to ex-
plore new ideas whose implementation would
have been considered too tedious or too arcane
in the past.

References

[1] Almesberger, Werner. Booting Linuz: The
History and the Future, Proceedings of
the Ottawa Linux Symposium 2000, July
2000. http://www.almesberger.net/cv/
papers/ols2k-9.ps

[2] Biederman, Eric W. Kexec tools and
patches. http://wuw.xmission.com/
“ebiederm/files/kexec/

[3] Goyal, Vivek; Biederman, Eric W.; Nel-
litheertha, Hariprasad. Kdump, A Kezxec-
based Kernel Crash Dumping Mechanism,
Proceedings of the Ottawa Linux Sym-
posium 2005, vol. 1, pp. 169-180, July
2005. http://www.linuxsymposium.org/
2005/1linuxsymposium_procvl.pdf

[4] Pfiffer, Andy. Reducing System Re-
boot Time with kezec, April 2003.
http://www.osdl.org/archive/andyp/
kexec/whitepaper/kexec.pdf

[5] Nellitheertha, Hariprasad. Reboot Linuz
Faster wusing kexec, May 2004. http:
//wwwu-128.ibm. com/developerworks/
linux/library/l-kexec.html

[6] Andersen, Erik.
uclibc.org/

uClibc. http://www.

[7] Andersen, Erik. BUSYBOX. http://
busybox.net/

[8] Kroah-Hartman, Greg; et al. udev.
http://www.kernel.org/pub/linux/
utils/kernel/hotplug/udev.html

[9] Johnston, Matt. Dropbear SSH server
and client. http://matt.ucc.asn.au/
dropbear/dropbear.html

[10] CE Linux Forum. Bootup TimeRe-
sources, CE Linux Public Wiki. http:
//tree.celinuxforum.org/pubwiki/

moin.cgi/BootupTimeResources

[11] Andersen, Erik. BUILDROOT. http://

buildroot.uclibc.org/

[12] OpenEmbedded.
org/

http://oe.handhelds.

