
kboot { A Boot Loader Based on Kexe


Werner Almesberger

werner�almesberger.net

September 26, 2005

Abstra
t

Compared to the \
onsoles" found on tradi-

tional Unix workstations and mini-
omputers,

the Linux boot pro
ess is feature-poor, and the

addition of new fun
tionality to boot loaders

often results in massive 
ode dupli
ation. With

the availability of kexe
, this situation 
an be

improved.

kboot is a proof-of-
on
ept implementation

of a Linux boot loader based on kexe
. kboot

uses a boot loader like LILO or GRUB to load

a regular Linux kernel as its �rst stage. Then,

the full 
apabilities of the kernel 
an be used

to lo
ate and to a

ess the kernel to be booted,

perform limited diagnosti
s and repair, et
.

1 Oh no, not another boot

loader !

There is already no shortage of boot loaders for

Linux, so why another one ? The motivation for

writing kboot is simply that the boot pro
ess

of Linux is still not as good as it 
ould be, and

that re
ent te
hnologi
al advan
es have made

it 
omparably easy to do better.

Looking at traditional Unix servers and work-

stations, one often �nds very powerful boot en-

vironments, o�ering a broad 
hoi
e of possible

sour
es for the kernel and other system �les to

load. It is also quite 
ommon to �nd various

tools for hardware diagnosis and system soft-

ware repair. On Linux, many boot loaders are

mu
h more limited than this.

Even boot loaders that provide several of

these advan
ed features, like GRUB, su�er from

the problem that they need to repli
ate fun
-

tionality or at least 
ode found elsewhere, whi
h


reates an ever in
reasing maintenan
e burden.

Similarly, any drivers or proto
ols the boot

loader in
orporates, will have to be maintained

in its 
ontext.

New boot loader fun
tionality is not only

required be
ause administrators demand more

powerful tools, but also be
ause te
hnologi
al

progress leads to more and more 
omplex me
h-

anisms for a

essing storage and other devi
es,

whi
h a boot loader eventually should be able

to support.

It is easy to see that a regular Linux system

happens to support a superset of all the fun
-

tionality des
ribed above.

With the addition of the kexe
 system 
all to

the 2.6.13 mainline Linux kernel, we now have

an instrument that allows us to build boot load-

ers with a fully featured Linux system, tailored

a

ording to needs and resour
es.

Kboot is a proof-of-
on
ept implementation

of su
h a boot loader. It demonstrates that new

fun
tionality 
an be merged from the vast 
ode

base available for Linux with great ease, and

without in
urring any signi�
ant maintenan
e

overhead. This way, it 
an also serve as a plat-

form for the development of new boot 
on
epts.

The proje
t's home page is at http://

kboot.sour
eforge.net/

The remainder of this se
tion gives a high-

level view of the role of a boot loader in general,

and what kboot aims to a

omplish. Additional

te
hni
al details about the boot pro
ess, in
lud-

ing tasks performed by the Linux kernel when

bringing up user spa
e, 
an be found in [1℄.

Se
tion 2 brie
y des
ribes Eri
 Biederman's

kexe
 [2℄, whi
h plays a key role in the operation

of kboot. Se
tion 3 introdu
es kboot proper,

explains its stru
ture, and dis
usses its appli
a-

tion. Se
tion 4 gives an outlook on future work,

and we 
on
lude with se
tion 5.

1.1 What a boot loader does

After being loaded by the system's �rmware, a

boot loader spends a few moments making it-

self 
omfortable on the system. This in
ludes

loading additional parts, moving itself to other

memory regions, and establishing a

ess to de-

vi
es.



Boot

process

Hard− and firmware

New device drivers
New protocols

Combination of services
New file systems Convenience

Compatible "look and feel"

Administration User experience

Figure 1: The boot pro
ess exists in a world full of 
hanges and fa
es requirements from many

dire
tions. All this leads to the need to 
ontinuously grow in fun
tionality.

After that, it typi
ally tries to intera
t with

the user. This intera
tion 
an range from


he
king whether the user is trying to get the

boot loader's attention by pressing some key,

through a 
ommand line or a simple full-s
reen

menu, to a lavish graphi
al user interfa
e.

Whatever the interfa
e may be, in the end

its main purpose is to allow the user to sele
t,

perhaps along with some other options, whi
h

operating system or kernel will be booted. On
e

this 
hoi
e is made, the boot loader pro
eeds to

load the 
orresponding data into memory, does

some additional setup, e.g., to pass parameters

to the operating system it is booting, and trans-

fers 
ontrol to the entry point of the 
ode it has

loaded.

In the 
ase of Linux, two items deserve spe
ial

mention: the boot parameter line and the initial

RAM disk.

The boot parameter line was at its in
ep-

tion intended primarily as a means for passing

a \boot into single user mode" 
ag to the ker-

nel, but this got a little out of hand, and it is

nowadays often used to pass dozens if not hun-

dreds of bytes of essential 
on�guration data

to the kernel, su
h as the lo
ation of the root

�le system, instru
tions for how 
ertain drivers

should initialize themselves (e.g., whether it is

safe for the IDE driver to try to use DMA or

not), and the sele
tion of items in
luded in a

generi
 kernel (e.g., disabling ACPI support).

Sin
e a kernel would often not even boot

without the 
orre
t set of boot parameters, a

boot loader must store them in its 
on�gura-

tion, and pass them to the kernel without re-

quiring user a
tion. At the same time, users

should of 
ourse be able to manually set and

override su
h parameters.

The initial RAM disk (initrd), whi
h at the

time of writing is gradually being repla
ed by

the initial RAM �le system (initramfs), pro-

vides an early user spa
e, whi
h is put into

memory by the boot loader, and is thus avail-

able even before the kernel is fully 
apable to

intera
t with its surroundings. This early user

spa
e is used for extended setup operations,

su
h as the loading of driver modules.

Given that the use of initrd is an integral

part of many Linux distributions, any general-

purpose Linux boot loader must support this

fun
tionality.

1.2 What a boot loader should be

like

A boot loader has mu
h in 
ommon with the

operating system it is loading: it shares the

same hardware, exists in the same administra-

tive 
ontext, and is seen by the same users.

From all these dire
tions originate requirements

on the boot pro
ess, as illustrated in �gure 1.

The boot loader has to be able to a

ess at

least the hardware that leads to the lo
ations

from whi
h data has to be loaded. This does

not only in
lude physi
al resour
es, but also

any proto
ols that are used to 
ommuni
ate

with devi
es. Firmware sometimes provides a

set of fun
tions to perform su
h a

esses, but

new hardware or proto
ol extensions often re-

quire support that goes beyond this.

Above basi
 a

ess me
hanisms lies the do-

main of servi
es the administrator 
an 
ombine

more or less freely. This begins with �le sys-

tem formats, and gets parti
ularly interesting



kboot −f

Kernel memory
(before rebooting)

Kernel
code

Kernel memory
(while and after rebooting)

Kernel
code

Jump to kernel setup

Order pages

1 3

Copy file(s) through user space
into kernel memory

file

4

Run kexec reboot
code

2

Figure 2: Simpli�ed boot sequen
e of kexe
.

when using networks. For example, there is

nothing inherently wrong in wanting to boot

kernels that happen to be stored in RPM �les

on an NFS server, whi
h is rea
hed through an

IPse
 link.

Last but not least, whenever users have to

perform non-trivial tasks with the boot loader,

they will prefer a 
ontext similar to what they

are used to from normal intera
tion with the

system. For instan
e, path names starting at

the root of a �le system hierar
hy tend to be

easier to remember than devi
e-lo
al names

pre�xed with a disk and partition number.

In addition to all this, it is often desirable if

small repair work on an unbootable system 
an

be done from the boot loader, without having

to �nd or prepare a system re
overy medium,

or similar.

The bottom line is that a general-purpose

boot loader will always grow in fun
tionality

along the lines of what the full operating sys-

tem 
an support.

1.3 The story so far

The two prin
ipal boot loaders for Linux on the

i386 platform, LILO and GRUB, illustrate this

trend ni
ely.

LILO was designed with the goal in mind of

being able to load kernels from any �le system

the kernel may support. Other fun
tionality

has been added over time, but growth has been

limited by the author's 
hoi
e of implementing

the entire boot loader in assembler.

1

GRUB appeared several years later and

was written in C from the beginning, whi
h

helped it to absorb additional fun
tionality

more qui
kly. For instan
e, GRUB 
an dire
tly

read a large number of di�erent �le system for-

mats, without having to rely on external help,

su
h as the map �le used by LILO. GRUB also

o�ers limited networking support.

Unfortunately, GRUB still requires that any

new fun
tionality, be it drivers, �le systems, �le

formats, network proto
ols, or anything else, is

integrated into GRUB's own environment. This

somewhat slows initial in
orporation of new fea-

tures, and, worse yet, leads to an in
reasing

amount of 
ode that has to be maintained in

parallel with its 
ounterpart in regular Linux.

In an ideal boot loader, the di�eren
e be-

tween the environment found on a regular Linux

system and that in the boot loader would be

redu
ed to a point where integration of new

features, and their subsequent maintenan
e, is

trivial. Furthermore, redu
ing the barrier for

working on the boot loader should also en
our-

age 
ustomization for spe
i�
 environments,

and more experimental uses.

The author has proposed the use of the Linux

kernel as the main element of a boot loader in

[1℄. Sin
e then, �ve years have passed, some of

the te
hnology has �rst 
hanged, then matured,

and with the integration of the key element re-

quired for all this into the mainstream kernel,

work on this new kind of boot loader 
ould start

in earnest.

1. LILO was written in 1992. At that time, 32-bit real

mode of the i386 pro
essor was not generally known,

and the author therefore had to 
hoose between pro-

gramming in the 16-bit mode in whi
h the i386 starts,

or implementing a fully-featured 32-bit prote
ted mode

environment, 
omplete with real-mode 
allba
ks to in-

voke BIOS fun
tions. After 
hoosing the less intrusive

of the two approa
hes, there was the problem that no

suitable and reasonably widely deployed free C 
ompiler

was available. Hen
e the de
ision to write LILO in as-

sembler.



2 Booting kernels with

kexe


One predi
tion in [1℄ 
ame true almost im-

mediately, namely that major 
hanges to the

bootimg me
hanism des
ribed there were quite

probable: when Eri
 Biederman released kexe
,

it swiftly repla
ed bootimg, being te
hnologi-


ally superior and also better maintained.

Unfortunately, adoption of kexe
 into the

mainstream kernel took mu
h longer than any-

one expe
ted, in part also be
ause it underwent

design 
hanges to better support the very ele-

gant kdump 
rash dump me
hanism [3℄, and it

was only with the 2.6.13 kernel that it was �-

nally a

epted.

2.1 Operation

This is a brief overview of the fundamental as-

pe
ts of how kexe
 operates. More details 
an

be found in [4℄, [5℄, and also [3℄.

As shown in �gure 2, the user spa
e tool

kexe
 �rst loads the 
ode of the new kernel plus

any additional data, su
h as an initial RAM

disk, into user spa
e memory, and then invokes

the kexe
_load system 
all to 
opy it into ker-

nel memory (1). During the loading, the user

spa
e tool 
an also add or omit data (e.g., setup


ode), and perform format 
onversions (e.g.,

when reading from an ELF �le).

After that, a reboot system 
all is made to

boot the new kernel (2). The reboot 
ode tries

to shut down all devi
es, su
h that they are in

a de�ned and ina
tive state, from whi
h they


an be instantly rea
tivated after the reboot.

Sin
e data pages 
ontaining the new kernel

have been loaded to arbitrary physi
al lo
ations

and 
ould not o

upy the same spa
e as the


ode of the old kernel before the reboot anyway,

they have to be moved to their �nal destination

(3).

Finally, the reboot 
ode jumps to the en-

try point of the setup 
ode of the new kernel.

That kernel then goes through its initialization,

brings up drivers, et
.

2.2 Debugging

The weak spot of kexe
 are the drivers: some

drivers may simply ignore the request to shut

down, others may be overzealous, and dea
-

tivate the devi
e in question 
ompletely, and

some may leave the devi
e in a state from whi
h

it 
annot be brought ba
k to life, be this either

udev

dropbear

kexec

etc.

kboot utils

kboot shell

uClibc

Lean kernel

(sh, cat, mount, ...)
BusyBox

Figure 3: The software sta
k of the kboot envi-

ronment.

be
ause the state itself is in
orre
t or irre
ov-

erable, or be
ause the driver simply does not

know how to resume from this spe
i�
 state.

Many of these problems have not be
ome vis-

ible yet, be
ause those drivers have not been

subje
ted to this spe
i�
 shutdown and reboot

sequen
e so far.

The developers of kexe
 and kdump have

made a great e�ort to make kexe
 work with a

large set of hardware, but given the sheer num-

ber of drivers in the kernel and also in parallel

trees, there are doubtlessly many more prob-

lems still awaiting dis
overy.

Sin
e kboot is the �rst appli
ation of kexe


that should attra
t interest from more than a

relatively small group of developers, many of

the expe
ted driver 
on
i
ts will surfa
e in the

form of boot failures o

urring under kboot.

3 Putting it all together

Kboot bundles the 
omponents needed for a

boot loader, and provides the \glue" to hold

them together. For this, it needs very little


ode: only roughly 3'000 lines, as of version

4. Already LILO ex
eeds this by one order of

magnitude, and GRUB further doubles LILO's

�gure.

2

Of 
ourse, during its build pro
ess, kboot

pulls in various large pa
kages, among them the

entire GCC tool 
hain, a C library, BusyBox,

assorted other utilities, and the Linux kernel it-

self. In this regard, kboot resembles more a dis-

tribution like Gentoo or OpenEmbedded, whi
h

2. These numbers were obtained by quite uns
ienti�-


ally running w
 -l on a somewhat arbitrary set of the

�les in the respe
tive sour
e trees.



Firmware

kboot

Boot loader

kexec

legacy OS
Reboot to

Main system
("booted environment")

initramfs
Kernel

Figure 4: The boot sequen
e when using kboot.


onsist mainly of meta-information about pa
k-

ages maintained by other parties.

3.1 The boot environment

Figure 3 shows the software pa
kages that 
on-

stitute the kboot environment. Its basis is a

Linux kernel. This kernel only needs to support

the devi
es, �le systems, and proto
ols that will

be used by kboot, and 
an therefore be 
onsid-

erably smaller than a fully-featured produ
tion

kernel for the same ma
hine.

In order to save spa
e, kboot uses uClib
 [6℄

instead of the mu
h larger glib
. Unfortunately,

properly supporting a library di�erent from the

one on the host system requires building a ded-

i
ated version of GCC. Sin
e uClib
 is sensitive

to the 
ompiler version, kboot also builds a lo-


al 
opy of GCC for the host. To be on the safe

side, it also builds binutils.

After this tour de for
e, kboot builds the

appli
ations for its user spa
e, whi
h in
lude

BusyBox [7℄, udev [8℄, the kexe
 tools [2℄, and

dropbear [9℄. BusyBox provides a great many


ommon programs, ranging from a Bourne

shell, through system tools like \mount", to a


omplete set of networking utilities, in
luding

\wget" and a DHCP 
lient. Udev is responsi-

ble for the 
reation of devi
e �les in /dev. It

is a user spa
e repla
ement for the kernel-based

devfs. The kexe
 tools provide the user spa
e

interfa
e to kexe
.

Last but not least, dropbear, an SSH server

and 
lient pa
kage, is in
luded to demonstrate

the 
exibility a�orded by this design. This

also o�ers a simple remote a

ess to the boot

prompt, without the need to set up a serial 
on-

sole for just this purpose.

3.2 The boot sequen
e

The boot sequen
e, shown in �gure 4, is as fol-

lows: �rst, the �rmware loads and starts the

�rst-stage boot loader. This would typi
ally be

a program like GRUB or LILO, but it 
ould also

be something more spe
ialized, e.g., a loader for

on-board Flash memory. This boot loader then

immediately pro
eeds to load kboot's Linux

kernel and kboot's initramfs.

The kernel goes through the usual initializa-

tion and then starts the kboot shell, whi
h up-

dates its 
on�guration �les (see se
tion 3.5),

may bring up networking, and then intera
ts

with the user.

If the user 
hooses, either a
tively or through

a timeout, to start a Linux system, kboot then

uses kexe
 to load the kernel and maybe also an

initial RAM disk.

Although not yet implemented at the time of

writing, kboot will also be able to boot lega
y

operating systems. The plan is to initially avoid

the quagmire of restoring the �rmware environ-

ment to the point that the system 
an be booted

from it, but to hand the boot request ba
k to

the �rst stage boot loader (e.g., with lilo -R

or grub-set-default), and to reboot through

the �rmware.

3.3 The boot shell

At the time of writing, the boot shell is fairly

simple. After initializing the boot environment,

it o�ers a 
ommand line with editing, 
ommand

and �le name 
ompletion, and a history fun
-

tion for the 
urrent session.

The following types of items 
an be entered:

� Names of variables 
ontaining a 
ommand.

These variables are usually de�ned in the

kboot 
on�guration �le, but 
an also be set

during a kboot session.

3

The variable is

expanded, and the shell then pro
esses the


ommand. This is a slight generalization of

the label in LILO, or the title in GRUB.

� The path to a �le 
ontaining a bootable

kernel. Path names are generalized in

kboot, and also allow dire
t a

ess to de-

vi
es and some network resour
es. They

3. In the latter 
ase, they are lost when the session

ends.



Syntax Example Des
ription

variable my_kernel Command stored in a variable

/path /boot/bzImage-2.6.13.2 Absolute path in booted environment

//path 
at //et
/fstab Absolute path in kboot environment

path 
d linux-2.6.14 Relative path in 
urrent environment

devi
e hda7 Devi
e 
ontaining a boot se
tor

/dev/devi
e /dev/hda7 Devi
e �le of devi
e with boot se
tor

devi
e:/path hda1:/bzImage File or dire
tory on a devi
e

devi
e:path hda1:bzImage (impli
it /dev/)

/dev/devi
e:/path /dev/sda6:/foo/bar File or dire
tory on a devi
e

/dev/devi
e:path /dev/sda6:foo/bar (expli
it /dev/)

host:/path server:/home/k/bzImage-a File or dire
tory on an NFS server

http://host/path http://server/foo File on an HTTP server

ftp://host/path ftp://server/foo/bar File on an FTP server

Table 1: Types of path names re
ognized by kboot.

are des
ribed in more detail in the next se
-

tion. When su
h a path name is entered,

kboot tries to boot the �le through kexe
.

� The name of a blo
k devi
e 
ontaining the

boot se
tor of a lega
y operating system, or

the path to the 
orresponding devi
e �le.

� An internal 
ommand of the kboot shell.

It 
urrently supports 
d and pwd, with the

usual semanti
s.

� A shell 
ommand. The kboot shell per-

forms path name substitution, and then

runs the 
ommand. If the 
ommand uses

an exe
utable from the booted environ-

ment, it is run with 
hroot, sin
e the

shared libraries available in the kboot envi-

ronment are almost 
ertainly in
ompatible

with the expe
tations of the exe
utable.

With the ex
eption of a few helper programs,

like the 
ommand line editor, the kboot shell is

implemented as a shell s
ript.

3.4 Generalized path names

Kboot automati
ally mounts �le systems of

the booted environment, on expli
itly spe
i�ed

blo
k devi
es, and { if networking is enabled

{ also from NFS servers. Furthermore, it 
an


opy and then boot �les from HTTP and FTP

servers.

For all this, it uses a generalized path name

syntax that re
e
ts the most 
ommon forms of

spe
ifying the respe
tive resour
es. E.g., for

NFS, the host:path syntax is used, for HTTP, it

is a URL, and paths on the booted environment

look just like normal Unix path names. Table

1 shows the various forms of path names.

Absolute paths in the kboot environment are

an ex
eption: they begin with two slashes in-

stead of one.

We 
urrently assume that there is one prin
i-

pal booted system environment, whi
h de�nes

the \normal" �le system hierar
hy on the ma-


hine in question. Support for systems with

multiple booted environments is planned for fu-

ture versions of kboot.

3.5 Con�guration �les

When kboot starts, it only has a

ess to the


on�guration �les stored in its initramfs. These

were gathered at build time, either from the

user (who pla
ed them in kboot's 
onfig/ di-

re
tory), or from the 
urrent 
on�guration of

the build host.

This set of �les in
ludes kboot's own 
on-

�guration /et
/kboot.
onf, /et
/fstab, and

/et
/hosts. The kboot build pro
ess also adds

a �le /et
/kboot-features 
ontaining set-

tings needed for the initialization of the kboot

shell.

Kboot 
an now either use these �les, or it


an, at the user's dis
retion, try to mount the

�le system 
ontaining the /et
 dire
tory of the

booted environment, and obtain more re
ent


opies of them.

The de
ision of whether kboot will use its

own 
opies, or attempt an update �rst, is made

at build time. It 
an be superseded at boot time

by passing the kernel parameter kboot=lo
al.



/etc/fstab
/etc/hosts

kboot.conf
Build environment

kboot

kboot.conf
fstab
hosts

Mount /etcCopy latest
versions

Booted
environment

Figure 5: Con�guration �les used by kboot.

3.6 When not to use kboot

While kboot it designed to be a 
exible and

extensible solution, there are areas where this

type of boot loader ar
hite
ture does not �t.

If only very little persistent storage is avail-

able, whi
h is a 
ommon situation in small em-

bedded systems, or if large enough storage de-

vi
es would be available, but 
annot be made

an integral part of the boot pro
ess, e.g., re-

movable or unreliable media, only a boot loader

optimized for tiny size may be suitable.

Similarly, if boot time is 
riti
al, the time

spent loading and initializing an extra kernel

may be too mu
h. The boot time of regu-

lar desktop or server type ma
hines already

greatly ex
eeds the minimum boot time of a

kernel, whi
h embedded system developers aim

to bring well below one se
ond [10℄, so loading

another kernel does not add signi�
ant over-

head, parti
ularly if the streamlining proposed

below is applied.

Finally, the large hidden 
ode base of kboot

is unsuitable if high demands on system relia-

bility, at least until the point when the kernel

is loaded, require that the number of software


omponents be kept to a minimum.

3.7 Extending kboot

The most important aspe
t of kboot is not the

set of features it already o�ers, but that it

makes it easy to add new ones.

New devi
e drivers, low-level proto
ols (e.g.,

USB), �le systems, network proto
ols, et
., are

usually dire
tly supported by the kernel, and

need no or only little additional support from

user spa
e. So kboot 
an be brought up to date

with the state of the art by a simple kernel up-

grade.

Most of the basi
 system software runs out

of the box on virtually all platforms supported

by Linux, and parti
ularly distributions for em-

bedded systems provide pat
hes that help with

the o

asional 
ompatibility glit
hes. They

also maintain 
ompa
t alternatives to pa
kages

where size may be an issue.

Similarly, given that kboot basi
ally provides

a regular Linux user spa
e, the addition of new

ornaments and improvements to the user inter-

fa
e, whi
h is an area with a 
ontinuous demand

for development, should be easy.

When porting kboot to a new platform, the

foremost { and also te
hni
ally most demand-

ing { issue is getting kexe
 to run. On
e this is

a

omplished, intera
tion with the boot loader

has to be adapted, if su
h intera
tion is needed.

Finally, any administrative tools that are spe-


i�
 to this platform need to be added to the

kboot environment.

4 Future work

At the time of writing, kboot is still a very

young program, and has only been tested by

a small number of people. As more user feed-

ba
k arrives, new lines of development will

open. This se
tion gives an overview of 
ur-

rently planned a
tivities and improvements.

4.1 Redu
ing kernel delays

The Linux kernel spends a fair amount of time

looking for devi
es. In parti
ular, IDE or SCSI

bus s
ans 
an try the patien
e of the user, be-


ause they repeat similar s
ans already done by

the �rmware. The use of kboot now adds an-

other round of the same.

A straightforward me
hanism that should

help to alleviate su
h delays would be to predi
t

their out
ome, and to stop the s
an as soon as

the list of dis
overed devi
es mat
hes the pre-

di
tion. Su
h a predi
tion 
ould be made by

kboot, based on information obtained from the

kernel it is running under, and be passed as a

boot parameter to be interpreted by the kernel

being booted.

On
e this is in pla
e, one 
ould also envision


on�guring su
h a predi
tion at the �rst stage

boot loader, and passing it dire
tly to the �rst

kernel. This way, slow devi
e s
ans that are



known to always yield the same result 
ould be


ompletely avoided.

4.2 Using a real distribution

The extensibility of kboot 
an be further in-


reased by repla
ing its build pro
ess, whi
h is

very similar to that of buildroot [11℄, with the

use of a modular distribution with a large set

of maintained pa
kages. In parti
ular OpenEm-

bedded [12℄ looks very promising.

The reasons for not reusing an existing build

pro
ess already from the beginning were mainly

that kboot needs tight 
ontrol over the 
on-

�guration pro
ess (to reuse kernel 
on�gura-

tion, and to propagate information from there

to other 
omponents) and pa
kage versions (in

order to know what users will a
tually be build-

ing), the sometimes large set of prerequisites,

and also problems en
ountered during trials.

4.3 Modular 
on�guration

Adding new fun
tionality to the kboot environ-

ment usually requires an extension of the build

pro
ess and 
hanges to the kboot shell. For


ommon tasks, su
h as the addition of a new

type of path names, it would be desirable to be

able to just drop a small des
ription �le into the

build system, whi
h would then interfa
e with

the rest of kboot over a well-de�ned interfa
e.

Regarding modules: at the time of writing,

kboot does not support loadable kernel mod-

ules.

5 Con
lusions

Kboot shows that a versatile boot loader 
an be

built with relative little e�ort, if using a Linux

kernel supporting kexe
 and a set of programs

designed with the spa
e 
onstraints of embed-

ded systems in mind.

By making it 
onsiderably easier to syn
hro-

nize the boot pro
ess with regular Linux devel-

opment, this kind of boot loader ar
hite
ture

should fa
ilitate more timely support for new

fun
tionality, and en
ourage developers to ex-

plore new ideas whose implementation would

have been 
onsidered too tedious or too ar
ane

in the past.

Referen
es

[1℄ Almesberger, Werner. Booting Linux: The

History and the Future, Pro
eedings of

the Ottawa Linux Symposium 2000, July

2000. http://www.almesberger.net/
v/

papers/ols2k-9.ps

[2℄ Biederman, Eri
 W. Kexe
 tools and

pat
hes. http://www.xmission.
om/

~ebiederm/files/kexe
/

[3℄ Goyal, Vivek; Biederman, Eri
 W.; Nel-

litheertha, Hariprasad. Kdump, A Kexe
-

based Kernel Crash Dumping Me
hanism,

Pro
eedings of the Ottawa Linux Sym-

posium 2005, vol. 1, pp. 169{180, July

2005. http://www.linuxsymposium.org/

2005/linuxsymposium_pro
v1.pdf

[4℄ P��er, Andy. Redu
ing System Re-

boot Time with kexe
, April 2003.

http://www.osdl.org/ar
hive/andyp/

kexe
/whitepaper/kexe
.pdf

[5℄ Nellitheertha, Hariprasad. Reboot Linux

Faster using kexe
, May 2004. http:

//www-128.ibm.
om/developerworks/

linux/library/l-kexe
.html

[6℄ Andersen, Erik. uClib
. http://www.

u
lib
.org/

[7℄ Andersen, Erik. BUSYBOX. http://

busybox.net/

[8℄ Kroah-Hartman, Greg; et al. udev.

http://www.kernel.org/pub/linux/

utils/kernel/hotplug/udev.html

[9℄ Johnston, Matt. Dropbear SSH server

and 
lient. http://matt.u

.asn.au/

dropbear/dropbear.html

[10℄ CE Linux Forum. BootupTimeRe-

sour
es, CE Linux Publi
 Wiki. http:

//tree.
elinuxforum.org/pubwiki/

moin.
gi/BootupTimeResour
es

[11℄ Andersen, Erik. BUILDROOT. http://

buildroot.u
lib
.org/

[12℄ OpenEmbedded. http://oe.handhelds.

org/


