TCP Connection Passing

Werner Almesberger

wer ner @l nmesber ger . net

Abstract

tcpcp is an experimental mechanism that al-
lows cooperating applications to pass owner-
ship of TCP connection endpoints from one
Linux host to another one. tcpcp can be used
between hosts using different architectures and
does not need the other endpoint of the con-
nection to cooperate (or even to know what’s
going on).

1 Introduction

When designing systems for load-balancing,
process migration, or fail-over, there is even-
tually the point where one would like to be
able to “move” a socket from one machine to
another one, without losing the connection on
that socket, similar to file descriptor passing on
a single host. Such a move operation usually
involves at least three elements:

1. Moving any application space state re-
lated to the connection to the new owner.
E.g. in the case of a Web server serv-
ing large static files, the application state
could simply be the file name and the cur-
rent position in the file.

2. Making sure that packets belonging to the
connection are sent to the new owner of

the socket. Normally this also means that
the previous owner should no longer re-
ceive them.

3. Last but not least, creating compatible
network state in the kernel of the new con-
nection owner, such that it can resume the
communication where the previous owner
left off.

Origin (server)

®\
e

N
) > Peer

(client)

Application state

S

Destination (server)

Packet routing

User space
Kernel
Kernel state

Figure 1: Passing one end of a TCP connection
from one host to another.

Figure 1 illustrates this for the case of a client-
server application, where one server passes
ownership of a connection to another server.
We shall call the host from which ownership of
the connection endpoint is taken the origin, the
host to which it is transferred the destination,
and the host on the other end of the connection
(which does not change) the peer.

Details of moving the application state are be-
yond the scope of this paper, and we will only
sketch relatively simple examples. Similarly,
we will mention a few ways for how the redi-
rection in the network can be accomplished,
but without going into too much detail.

The complexity of the kernel state of a network
connection, and the difficulty of moving this
state from one host to another, varies greatly
with the transport protocol being used. Among
the two major transport protocols of the Inter-
net, UDP [1] and TCP [2], the latter clearly
presents more of a challenge in this regard.
Nevertheless, some issues also apply to UDP.

tcpep (TCP Connection Passing) is a proof of
concept implementation of a mechanism that
allows applications to transport the kernel state
of a TCP endpoint from one host to another,
while the connection is established, and with-
out requiring the peer to cooperate in any way.
tcpep is not a complete process migration or
load-balancing solution, but rather a building
block that can be integrated into such systems.
tcpep consists of a kernel patch (at the time
of writing for version 2.6.4 of the Linux ker-
nel) that implements the operations for dump-
ing and restoring the TCP connection endpoint,
a library with wrapper functions (see section
3), and a few applications for debugging and
demonstration.

The project’s home page is at http://
t cpcp. sour cef orge. net/

The remainder of this paper is organized as fol-
lows: this section continues with a description
of the context in which connection passing ex-
ists. Section 2 explains the connection pass-
ing operation in detail. Sections 3 introduces
the APIs tcpep provides. The information that
defines a TCP connection and its state is de-
scribed in section 4. Sections 5 and 6 discuss
congestion control and the limitations TCP im-
poses on checkpointing. Security implications

of the availability and use of tcpcp are exam-
ined in section 7. We conclude with an outlook
on future direction the work on tcpcp will take
in section 8, and the conclusions in section 9.

The excellent “TCP/IP Illustrated” [3] is rec-
ommended for readers who wish to refresh
their memory of TCP/IP concepts and termi-
nology.

1.1 There is more than one way to do it

tcpcp is only one of several possible meth-
ods for passing TCP connections among hosts.
Here are some alternatives:

In some cases, the solution is to avoid pass-
ing the “live” TCP connection, but to termi-
nate the connection between the origin and the
peer, and rely on higher protocol layers to re-
establish a new connection between the des-
tination and the peer. Drawbacks of this ap-
proach include that those higher layers need to
know that they have to re-establish the connec-
tion, and that they need to do this within an
acceptable amount of time. Furthermore, they
may only be able to do this at a few specific
points during a communication.

The use of HTTP redirection [4] is a simple
example of connection passing above the trans-
port layer.

Another approach is to introduce an intermedi-
ate layer between the application and the ker-
nel, for the purpose of handling such redirec-
tion. This approach is fairly common in pro-
cess migration solutions, such as Mosix [5],
MIGSOCK [6], etc. It requires that the peer
be equipped with the same intermediate layer.

1.2 Transparency

The key feature of tcpcp is that the peer can be
left completely unaware that the connection is

passed from one host to another. In detail, this
means:

» The peer’s networking stack can be used
“as is”, without modification and without
requiring non-standard functionality

« The connection is not interrupted
» The peer does not have to stop sending

 No contradictory information is sent to the
peer

» These properties apply to all protocol lay-
ers visible to the peer

Furthermore, tcpcp allows the connection to be
passed at any time, without needing to syn-
chronize the data stream with the peer.

The kernels of the hosts between which the
connection is passed both need to support
tcpep, and the application(s) on these hosts will
typically have to be modified to perform the
connection passing.

1.3 Various uses

Application scenarios in which the functional-
ity provided by tcpcp could be useful include
load balancing, process migration, and fail-
over.

In the case of load balancing, an application
can send connections (and whatever processing
is associated with them) to another host if the
local one gets overloaded. Or, one could have a
host acting as a dispatcher that may perform an
initial dialog and then assigns the connection
to a machine in a farm.

For process migration, tcpcp would be in-
voked when moving a file descriptor linked to a

socket. If process migration is implemented in
the kernel, an interface would have to be added
to tcpep to allow calling it in this way.

Fail-over is tricker, because there is normally
no prior indication when the origin will be-
come unavailable. We discuss the issues aris-
ing from this in more detail in section 6.

2 Passing the connection

Figure 2 illustrates the connection passing pro-
cedure in detail.

1. The application at the origin initiates the
procedure by requesting retrieval of what
we call the Internal Connection Informa-
tion (ICI) of a socket. The ICI contains
all the information the kernel needs to re-
create a TCP connection endpoint

2. As a side-effect of retrieving the ICI,
tcpep isolates the connection: all incom-
ing packets are silently discarded, and no
packets are sent. This is accomplished
by setting up a per-socket filter, and by
changing the output function. Isolating
the socket ensures that the state of the con-
nection being passed remains stable at ei-
ther end.

3. The kernel copies all relevant variables,
plus the contents of the out-of-order and
send/retransmit buffers to the ICIl. The
out-of-order buffer contains TCP seg-
ments that have not been acknowledged
yet, because an earlier segment is still
missing.

4. After retrieving the ICI, the application
empties the receive buffer. It can either
process this data directly, or send it along
with the other information, for the desti-
nation to process.

Origin

Destination

. The application at the destination now sets

Copy kernel stateto ICl (3)

Empty receive buffer (4)
Application

<—| Receive |<—|0ut0f0rder|<—
|
—>| Send/Retransmit |—>—

Kﬁ Switch network traffic (8)

N

| Vars | Send/Retr |Out0f0rder| — Internal Connection Information -—-=--

I solate connection (2)

/

Get ICI (1)

Router, switch, ...

Bind port (6)

Set ICI (7)
Network path to peer

<——| Receive |4 OutOfOrder|4——
—Pi Send/Retransmit l—b—

ACK

L

Application

Activate connection (9)

(Re)transmit, or send ACK (10)

Send application state and ICl to new host (5)

—» Dataflow in networking stack —> Datatransfer —> Command

Figure 2: Passing a TCP connection endpoint in ten easy steps.

. The origin sends the ICI and any relevant 9. The application at the destination makes a

application state to the destination. The call to activate the connection.
application at the origin keeps the socket
open, to ensure that it stays isolated. 10. If there is data to transmit, the kernel
will do so. If there is no data, an other-
. The destination opens a new socket. It wise empty ACK segment (like a window
may then bind it to a new port (there are probe) is sent to wake up the peer.

other choices, described below).

the ICI on the socket. The kernel creates
and populates the necessary data struc-
tures, but does not send any data yet. The
current implementation makes no use of

nal one) with tcpcp.
the out-of-order data.

Network '[raffIC be|0nglng 1'0 the connec- 21 Loca| port Se|ecti0n
tion is redirected from the origin to the
destination host. Scenarios for this are de-

scribed in more detail below. The applica- The local port at the destination can be selected

tion at the origin can now close the socket. in three ways:

Note that, at the end of this procedure, the
socket at the destination is a perfectly normal
TCP endpoint. In particular, this endpoint can
be passed to another host (or back to the origi-

e The destination can simply try to use the
same port as the origin. This is necessary
if no address translation is performed on
the connection.

» The application can bind the socket before
setting the ICI. In this case, the port in the
ICI is ignored.

» The application can also clear the port
information in the ICI, which will cause
the socket to be bound to any available
port. Compared to binding the socket be-
fore setting the ICI, this approach has the
advantage of using the local port number
space much more efficiently.

The choice of the port selection method de-
pends on how the environment in which tcpcp
operates is structured. Normally, either the first
or the last method would be used.

2.2 Switching network traffic

There are countless ways for redirecting IP
packets from one host to another, without help
from the transport layer protocol. They in-
clude redirecting part of the link layer, inge-
nious modifications of how link and network
layer interact [7], all kinds of tunnels, network
address translation (NAT), etc.

Since many of the techniques are similar to
network-based load balancing, the Linux Vir-
tual Server Project [8] is a good starting point
for exploring these issues.

While a comprehensive study of this topic if
beyond the scope of this paper, we will briefly
sketch an approach using a static route, be-
cause this is conceptually straightforward and
relatively easy to implement.

The scenario shown in figure 3 consists of two
servers A and B, with interfaces with the IP ad-
dresses ipA and ipB, respectively. Each server

ipX gw ipA —— ipX gw ipB

ServerA [— -~

|
Q GW [—— - - —Client

Server B

Figure 3: Redirecting network traffic using a
static route.

also has a virtual interface with the address
ipX. ipA, ipB, and ipX are on the same subnet,
and also the gateway machine has an interface
on this subnet.

At the gateway, we create a static route as fol-
lows:

route add ipX gw ipA

When the client connects to the address ipX, it
reaches host A. We can now pass the connec-
tion to host B, as outlined in section 2. In step
8, we change the static route on the gateway as
follows:

route del ipX
route add ipX gw ipB

One major limitation of this approach is of
course that this routing change affects all con-
nections to ipX, which is usually undesirable.
Nevertheless, this simple setup can be used to
demonstrate the operation of tcpcp.

3 APIs

The API for tcpep consists of a low-level part
that is based on getting and setting socket op-
tions, and a high-level library that provides
convenient wrappers for the low-level API.

We mention only the most important aspects of
both APIs here. They are described in more de-
tail in the documentation that is included with

tcpep.

3.1 Low-level API

The ICI is retrieved by getting the TCP_I Cl
socket option. As a side-effect, the connection
is isolated, as described in section 2. The ap-
plication can determine the maximum ICI size
for the connection in question by getting the
TCP_MAXI ClI SI ZE socket option.

Example:

voi d *buf;
int ici_size;
size_t size = sizeof(int);

get sockopt (s, SOL_TCP, TCP_MAXI Cl Sl ZE,
& ci _size, &si ze);

buf = malloc(ici_size);

size = ici_size;

get sockopt (s, SOL_TCP, TCP_I CI ,
buf , &si ze) ;

The connection endpoint at the destination is
created by setting the TCP_I ClI socket option,
and the connection is activated by “setting”
the TCP_CP_FN socket option to the value
TCPCP_ACTI VATE.!

Example:

int sub_function = TCPCP_ACTI VATE;

set sockopt (s, SOL_TCP, TCP_I CI
buf , si ze);

[* ... %]

set sockopt (s, SOL_TCP, TCP_CP_FN,
&sub_function,
si zeof (sub_function));

1The use of a multiplexed socket option is admittedly
ugly, although convenient during development.

3.2 High-level API

These are the most important functions pro-
vided by the high-level API:

void *tcpcp_get(int s);

int tcpcp_size(const void *ici);
int tcpcp_create(const void *ici);
int tcpcp_activate(int s);

t cpcp_get allocates a buffer for the ICI, and
retrieves that ICI (isolating the connection as a
side-effect). The amount of data in the ICI can
be queried by callingt cpcp_si ze onit.

t cpcp_cr eat e sets an ICI on a socket, and
t cpcp_act i vat e activates the connection.

4 Describing a TCP endpoint

In this section, we describe the parameters that
define a TCP connection and its state. tcpcp
collects all the information it needs to re-create
a TCP connection endpoint in a data structure
we call Internal Connection Information (ICI).

The ICI is portable among systems supporting
tcpep, irrespective of their CPU architecture.

Besides this data, the kernel maintains a large
number of additional variables that can either
be reset to default values at the destination
(such as congestion control state), or that are
only rarely used and not essential for correct
operation of TCP (such as statistics).

4.1 Connection identifier

Each TCP connection in the global Internet or
any private internet [9] is uniquely identified by

Connection identifier

snd_wscal e Send window scale

rcv_wscal e

i p.v4.ip_src IPv4 address of the host on which the ICI was recorded (source)
i p. v4.ip_dst [IPv4 address of the peer (destination)

tcp_sport Port at the source host

tcp_dport Port at the destination host

Fixed at connection setup

tcp _flags TCP flags (window scale, SACK, ECN, etc.)

Receive window scale

snd_nss Maximum Segment Size at the source host
rcv_nes MSS at the destination host

Connection state

state TCP connection state (e.g. ESTABLISHED)
Sequence numbers

snd_nxt Sequence number of next new byte to send
rcv_nxt Sequence number of next new byte expected to receive
Windows (flow-control)

snd_wnd Window received from peer

rcv_wnd Window advertised to peer

Timestamps

ts_gen Current value of the timestamp generator
ts_recent Most recently received timestamp

Table 1: TCP variables recorded in tcpcp’s Internal Connection Information (I1CI) structure.

the IP addresses of the source and destination
host, and the port numbers used at both ends.

tcpcp currently only supports I1Pv4, but can
be extended to support IPv6, should the need
arise.

4.2 Fixed data

A few parameters of a TCP connection are ne-
gotiated during the initial handshake, and re-
main unchanged during the life time of the
connection. These parameters include whether
window scaling, timestamps, or selective ac-
knowledgments are used, the number of bits by
which the window is shifted, and the maximum
segment sizes (MSS).

These parameters are used mainly for sanity
checks, and to determine whether the destina-
tion host is able to handle the connection. The
received MSS continues of course to limit the
segment size.

4.3 Sequence numbers

The sequence numbers are used to synchronize
all aspects of a TCP connection.

Only the sequence numbers we expect to see
in the network, in either direction, are needed
when re-creating the endpoint. The kernel uses
several variables that are derived from these se-
guence numbers. The values of these variables
either coincide with snd_nxt and r cv_nxt

in the state we set up, or they can be calculated
by examining the send buffer.

4.4 Windows (flow-control)

The (flow-control) window determines how
much more data can be sent or received with-
out overrunning the receiver’s buffer.

The window the origin received from the peer
is also the window we can use after re-creating
the endpoint.

The window the origin advertised to the peer
defines the minimum receive buffer size at the
destination.

45 Timestamps

TCP can use timestamps to detect old segments
with wrapped sequence numbers [10]. This
mechanism is called Protect Against Wrapped
Sequence numbers (PAWS).

Linux uses a global counter (tcp_time_
st anp) to generate local timestamps. If a
moved connection were to use the counter at
the new host, local round-trip-time calculation
may be confused when receiving timestamp
replies from the previous connection, and the
peer’s PAWS algorithm will discard segments
if timestamps appear to have jumped back in
time.

Just turning off timestamps when moving the
connection is not an acceptable solution, even
though [10] seems to allow TCP to just stop
sending timestamps, because doing so would
bring back the problem PAWS tries to solve
in the first place, and it would also reduce the
accuracy of round-trip-time estimates, possibly
degrading the throughput of the connection.

A more satisfying solution is to synchroniza-
tion the local timestamp generator. This is

accomplished by introducing a per-connection
timestamp offset that is added to the value
of tcp_tinme_stanp. This calculation is
hidden inthe macrot p_ti nme_stanmp(tp),
which just becomest cp_ti nme_st anp if the
kernel is configured without tcpcp.

The addition of the timestamp offset is the only
major change tcpcp requires in the existing
TCP/IP stack.

4.6 Receive buffers

There are two buffers at the receiving side:
the buffer containing segments received out-of-
order (see section 2), and the buffer with data
that is ready for retrieval by the application.

tcpep currently ignores both buffers: the out-
of-order buffer is copied into the ICI, but not
used when setting up the new socket. Any data
in the receive buffer is left for the application
to read and process.

4.7 Send buffer

The send and retransmit buffer contains data
that is no longer accessible through the socket
API, and that cannot be discarded. It is there-
fore placed in the ICI, and used to populate the
send buffer at the destination.

4.8 Selective acknowledgments

In section 5 of [11], the use of inbound SACK
information is left optional. tcpcp takes advan-
tage of this, and neither preserves SACK infor-
mation collected from inbound segments, nor
the history of SACK information sent to the
peer.

Outbound SACKSs convey information about
the receiver’s out-of-order queue. Fortunately,

[11] declares this information as purely advi-
sory. In particular, if reception of data has been
acknowledged with a SACK, this does not im-
ply that the receiver has to remember having
done so. First, it can request retransmission of
this data, and second, when constructing new
SACKSs, the receiver is encouraged to include
information from previous SACKSs, but is un-
der no obligation to do so.

Therefore, while [11] discourages losing
SACK information, doing so does not violate
its requirements.

Losing SACK information may temporarily
degrade the throughput of the TCP connec-
tion. This is currently of little concern, be-
cause tcpcp forces the connection into slow
start, which has even more drastic performance
implications.

SACK recovery may need to be reconsid-
ered once tcpcp implements more sophisticated
congestion control.

4.9 Other data

The TCP connection state is currently always
ESTABLISHED. It may be useful to also al-
low passing connections in earlier states, e.g.
SYN_RCVD. This is for further study.

Congestion control data and statistics are cur-
rently omitted. The new connection starts with
slow-start, to allow TCP to discover the char-
acteristics of the new path to the peer.

5 Congestion control

Most of the complexity of TCP is in its conges-
tion control. tcpcp currently avoids touching
congestion control almost entirely, by setting
the destination to slow start.

This is a highly conservative approach that is
appropriate if knowing the characteristics of
the path between the origin and the peer does
not give us any information on the characteris-
tics of the path between the destination and the
peer, as shown in the lower part of figure 4.

j High-speed LAN

T Characteristics are identical

N
N\
7

— Reuse congestion control state

— Go to slow-start

[

e,

Figure 4. Depending on the structure of the
network, the congestion control state of the
original connection may or may not be reused.

\L Characteristics may differ

However, if the characteristics of the two paths
can be expected to be very similar, e.g. if the
hosts passing the connection are on the same
LAN, better performance could be achieved by
allowing tcpcp to resume the connection at or
nearly at full speed.

Re-establishing congestion control state is for
further study. To avoid abuse, such an opera-
tion can be made available only to sufficiently
trusted applications.

6 Checkpointing

tcpcp is primarily designed for scenarios,
where the old and the new connection owner
are both functional during the process of con-
nection passing.

A similar usage scenario would if the node
owning the connection occasionally retrieves
(“checkpoints”) the momentary state of the
connection, and after failure of the connection
owner, another node would then use the check-
point data to resurrect the connection.

While apparently similar to connection pass-
ing, checkpointing presents several problems
which we discuss in this section. Note that this
is speculative and that the current implementa-
tion of tcpcp does not support any of the exten-
sions discussed here.

We consider the send and receive flow of the
TCP connection separately, and we assume that
seqguence numbers can be directly translated to
application state (e.g. when transferring a file,
application state consists only of the actual file
position, which can be trivially mapped to and
from TCP sequence numbers). Furthermore,
we assume the connection to be in ESTAB-
LISHED state at both ends.

6.1 Outbound data

One or more of the following events may occur
between the last checkpoint and the moment
the connection is resurrected:

* the sender may have enqueued more data

e the receiver may have acknowledged
more data

* the receiver may have retrieved more data,
thereby growing its window

Assuming that no additional data has been re-
ceived from the peer, the new sender can sim-
ply re-transmit the last segment. (Alternatively,
tcp_xmt_probe_skb might be useful for
the same purpose.) In this case, the following
protocol violations can occur:

« The sequence number may have wrapped.
This can be avoided by making sure
that a checkpoint is never older than the
Maximum Segment Lifetime (MSL)?, and
that less than 23! bytes are sent between
checkpoints.

« If using PAWS, the timestamp may be be-
low the last timestamp sent by the old
sender. The best solution for avoiding this
is probably to tightly synchronize clock
on the old and the new connection owner,
and to make a conservative estimate of the
number of ticks of the local timestamp
clock that have passed since taking the
checkpoint. This assumes that the times-
tamp clock ticks roughly in real time.

Since new data in the segment sent after res-
urrecting the connection cannot exceed the re-
ceiver’s window, the only possible outcomes
are that the segment contains either new data,
or only old data. In either case, the receiver
will acknowledge the segment.

Upon reception of an acknowledgment, either
in response to the retransmitted segment, or
from a packet in flight at the time when the con-
nection was resurrected, the sender knows how
far the connection state has advanced since the
checkpoint was taken.

If the sequence number from the acknowl-
edgment is below snd_nxt, no special ac-
tion is necessary. If the sequence number is

2[2] specifies a MSL of two minutes.

above snd_nxt , the sender would exception-
ally treat this as a valid acknowledgment.3

As a possible performance improvement, the
sender may notify the application once a new
sequence number has been received, and the
application could then skip over unnecessary
data.

6.2 Inbound data

The main problem with checkpointing of in-
coming data is that TCP will acknowledge data
that has not yet been retrieved by the applica-
tion. Therefore, checkpointing would have to
delay outbound acknowledgments until the ap-
plication has actually retrieved them, and has
checkpointed the resulting state change.

To intercept all types of ACKs, tcp_
transm t _skb would have to be changed
to send t p- >copi ed_seq instead of t p- >
rcv_nxt. Furthermore, a new API function
would be needed to trigger an explicit acknowl-
edgment after the data has been stored or pro-
cessed.

Putting acknowledges under application con-
trol would change their timing. This may upset
the round-trip time estimation of the peer, and
it may also cause it to falsely assume changes
in the congestion level along the path.

7 Security

tcpcp bypasses various sets of access and con-
sistency checks normally performed when set-
ting up TCP connections. This section ana-
lyzes the overall security impact of tcpep.

3Note that this exceptional condition does not neces-
sarily have to occur with the first acknowledgment re-
ceived.

7.1 Two lines of defense

When setting TCP_ICI, the kernel has no
means of verifying that the connection infor-
mation actually originates from a compatible
system. Users may therefore manipulate con-
nection state, copy connection state from arbi-
trary other systems, or even synthesize connec-
tion state according to their wishes. tcpcp pro-
vides two mechanisms to protect against inten-
tional or accidental mis-uses:

1. tcpep only takes as little information as
possible from the user, and re-generates
as much of the state related to the TCP
connection (such as neighbour and desti-
nation data) as possible from local infor-
mation. Furthermore, it performs a num-
ber of sanity checks on the ICI, to ensure
its integrity, and compatibility with con-
straints of the local system (such as buffer
size limits and kernel capabilities).

2. Many manipulations possible through
tcpcp can be shown to be available
through other means if the application has
the CAP_NET_RAW capability. There-
fore, establishing a new TCP connection
with tcpcp also requires this capability.
This can be relaxed on a host-wide basis.

7.2 Retrieval of sensitive kernel data

Getting TCP_I CI may retrieve information
from the kernel that one would like to hide
from unprivileged applications, e.g. details
about the state of the TCP ISN generator. Since
the equally unprivileged TCP_I NFO already
gives access to most TCP connection meta-
data, tcpcp does not create any new vulnera-
bilities.

7.3 Local denial of service

Setting TCP_1 Cl could be used to introduce
inconsistent data in the TCP stack, or the ker-
nel in general. Preventing this relies on the cor-
rectness and completeness of the sanity checks
mentioned before.

tcpep can be used to accumulate stale data in
the kernel. However, this is not very different
from e.g. creating a large number of unused
sockets, or letting buffers fill up in TCP con-
nections, and therefore poses no new security
threat.

tcpep can be used to shutdown connections be-
longing to third party applications, provided
that the usual access restrictions grant access to
copies of their socket descriptors. This is sim-
ilar to executing shut down on such sockets,
and is therefore believed to pose no new threat.

7.4 Restricted state transitions

tcpep could be used to advance TCP connec-
tion state past boundaries imposed by internal
or external control mechanisms. In particular,
conspiring applications may create TCP con-
nections without ever exchanging SYN pack-
ets, bypassing SYN-filtering firewalls. Since
SYN-filtering firewalls can already be avoided
by privileged applications, sites depending on
SYN-filtering firewalls should therefore use
the default setting of tcpcp, which makes its
use also a privileged operation.

7.5 Attacks on remote hosts

The ability to set TCP_I Cl makes it easy
to commit all kinds of of protocol violations.
While tcpcp may simplify implementing such
attacks, this type of abuses has always been

possible for privileged users, and therefore,
tcpep poses no new security threat to systems
properly resistant against network attacks.

However, if a site allows systems where only
trusted users may be able to communicate with
otherwise shielded systems with known remote
TCP vulnerabilities, tcpcp could be used for at-
tacks. Such sites should use the default set-
ting, which makes setting TCP_I Cl a privi-
leged operation.

7.6 Security summary

To summarize, the author believes that the de-
sign of tcpcp does not open any new exploits if
tcpep is used in its default configuration.

Obviously, some subtleties have probably been
overlooked, and there may be bugs inadver-
tently leading to vulnerabilities. Therefore,
tcpep should receive public scrutiny before be-
ing considered fit for regular use.

8 Futurework

To allow faster connection passing among
hosts that share the same, or a very similar path
to the peer, tcpcp should try to avoid going to
slow start. To do so, it will have to pass more
congestion control information, and integrate it
properly at the destination.

Although not strictly part of tcpcp, the redirec-
tion apparatus for the network should be fur-
ther extended, in particular to allow individual
connections to be redirected at that point too,
and to include some middleware that coordi-
nates the redirecting with the changes at the
hosts passing the connection.

It would be very interesting if connection pass-
ing could also be used for checkpointing. The

analysis in section 6 suggests that at least lim-
ited checkpointing capabilities should be feasi-
ble without interfering with regular TCP oper-
ation.

The inner workings of TCP are complex and
easily disturbed. It is therefore important to
subject tcpep to thorough testing, in particu-
lar in transient states, such as during recovery
from lost segments. The umlsim simulator [12]
allows to generate such conditions in a deter-
ministic way, and will be used for these tests.

9 Conclusion

tcpep is a proof of concept implementation that
successfully demonstrates that an endpoint of
a TCP connection can be passed from one host
to another without involving the host at the op-
posite end of the TCP connection. tcpcp also
shows that this can be accomplished with a rel-
atively small amount of kernel changes.

tcpep in its present form is suitable for exper-
imental use as a building block for load bal-
ancing and process migration solutions. Future
work will focus on improving the performance
of tcpep, on validating its correctness, and on
exploring checkpointing capabilities.

References

[1] RFC768; Postel, Jon. User Datagram
Protocol, IETF, August 1980.

[2] RFC793; Postel, Jon. Transmission Con-
trol Protocol, IETF, September 1981.

[3] Stevens, W. Richard. TCP/IP Illustrated,
Volume 1 — The Protocols, Addison-
Wesley, 1994.

[4] RFC2616; Fielding, Roy T.; Gettys,
James; Mogul, Jeffrey C.; Frystyk
Nielsen, Henrik; Masinter, Larry; Leach,
Paul J.; Berners-Lee, Tim. Hypertext
Transfer Protocol — HTTP/1.1, IETF,
June 1999.

[5] Bar, Moshe. OpenMosix, Proceedings
of the 10th International Linux System
Technology Conference (Linux-Kongress
2003), pp. 94-102, October 2003.

[6] Kuntz, Bryan; Rajan, Karthik.
MIGSOCK - Migratable TCP Socket in
Linux, CMU, M.Sc. Thesis, February
2002. http://ww- 2. cs. cnu.
edu/ ~sof t agent s/ m gsock/

M GSCOCK. pdf

[7] Leite, Fabio Olivé. Load-Balancing HA
Clusters with No Single Point of Failure,
Proceedings of the 9th International
Linux System Technology Conference
(Linux-Kongress 2002), pp. 122-131,
September 2002. http://ww.
| i nux- kongr ess. or g/ 2002/
paper s/ | k2002-1eite. htm

[8] Linux Virtual Server Project, htt p://
www. | i nuxvi rtual server. org/

[9] RFC1918; Rekhter, Yakov; Moskowitz,
Robert G.; Karrenberg, Daniel; de Groot,
Geert Jan; Lear, Eliot. Address Alloca-
tion for Private Internets, IETF, February
1996.

[10] RFC1323; Jacobson, Van; Braden, Bob;
Borman, Dave. TCP Extensions for High
Performance, IETF, May 1992.

[11] RFC2018; Mathis, Matt; Mahdavi,
Jamshid; Floyd, Sally; Romanow, Al-
Iyn. TCP Selective Acknowledgement Op-
tions, IETF, October 1996.

[12] Almesberger, Werner. UML Sim-

ulator, Proceedings of the Ot-
tawa Linux Symposium 2003,
July 2003. http://archive.
| i nuxsynposi um or g/ ol s2003/
Proceedi ngs/ Al | - Reprints/
Repri nt - Al mesber ger - OLS2003.
pdf

