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Abstract

umlsim extends user-mode Linux (UML) with
an event-driven simulation engine and other
instrumentation needed for deterministically
controlling the flow of time as seen by the
UML kernel and applications running under it.

umlsim will be useful for a wide range of ap-
plications in research and kernel development,
including simulations involving the network-
ing code, regression tests, proof of race con-
ditions, validation of configuration scripts, and
also performance analysis.

This paper describes the design and implemen-
tation of umlsim, gives a brief overview of the
scripting language, and shows a real-life usage
example.

1 Introduction

Simulation is an effective means for examining
properties of systems that are too complex, too
volatile, too expensive, or simply too large to
build and test in real life.

In the development of the Linux kernel, simu-
lations only play a niche role, and are rarely
used for more than helping in the design of
individual components. Also for performance
evaluation, there is broad reliance on bench-

mark suites, but little is done with simulations
that would allow to pinpoint bottlenecks and
regressions with much more accuracy.

umlsim provides an environment that allows
the use of regular Linux kernel or application
code in event-driven simulations. It consists of
an extension of user-mode Linux (UML, [1])
to control the flow of time as seen by the UML
kernel and applications running under it, and a
simulation control system that acts like a de-
bugger, and that is programmed in a C and
Perl-like scripting language.

The key feature of umlsim is that – unlike most
other simulators, which implement an abstract
model of the system being simulated – it uses
the original Linux kernel code, with only mi-
nor changes. This reduces the risk of creating
simulations that differ in some important de-
tails from the original, avoids code forking, and
generally shortens the process of designing and
building a simulation.

The simulation environment is deterministic,
i.e. running a simulation multiple times will
produce exactly the same results, although one
can of course also introduce real or pseudo ran-
domness. This makes umlsim suitable for re-
gression tests, and for exercising specific exe-
cution patterns that exhibit problems.
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One of the first uses of umlsim is to exam-
ine the behaviour of Linux TCP in gigabit net-
works [2], but it will also be useful for many
other applications in research and kernel de-
velopment, including regression tests, exami-
nation of race conditions and other kernel bugs,
validation of configuration scripts, and perfor-
mance analysis.

This paper is intended for two different au-
diences: first, it aims to introduce the capa-
bilities and concepts of umlsim to prospective
users. Second, it gives other kernel develop-
ers an overview of the kernel changes, and de-
scribes mechanisms that could also be useful in
other projects.

This introduction continues with the historical
background and related work. Section 2 dis-
cusses overall design and implementation as-
pects, and section 3 describes the most impor-
tant elements of the scripting language. A real-
life simulation example is given in section 4.
We conclude with a discussion of future uses
and improvements.

1.1 History

The basic concept behind umlsim, namely to
use original kernel and user space code in sim-
ulations, was already explored in the earlier
tcng (“Traffic Control Next Generation” [3])
project.

The main component of tcng is a compiler that
translates traffic control configurations from a
high-level language to the low-level commands
understood by the tc command-line utility. In
that project, a simulator called tcsim is used
to validate that these commands are formally

correct, and that they also yield the desired
behaviour. In particular, since the configu-
ration process involves many inter-related pa-
rameters with poorly documented semantics, it
happened quite frequently that the use of some
parameters or constructs was mis-interpreted.

Simulators usually implement an abstracted
model of the system they simulate. In the case
of tcng, this approach could lead to a simulator
that contains the same mis-interpretations as
the program being tested, so both would hap-
pily agree on incorrect results.

To avoid this problem, tcsim reduces the
amount of abstraction needed by building the
simulation environment from portions of the
original traffic control code of the kernel, and
the tc configuration utility. The structure of tc-
sim is depicted on the left-hand side of figure
1.

This approach also allows the use of powerful
user-space debugging tools like ElectricFence
[4] and valgrind [5] to find bugs in the original
code.

The difficult part in writing tcsim was to extract
precisely the right amount of kernel code, and
to make it fit in the simulation environment.
In many cases, some small code modifications
are needed to eliminate unwanted references to
structure elements, variables, and functions not
available in the simulator. All this makes the
extraction procedure very sensitive to even the
smallest changes.

tcsim was written for 2.4 kernels. Early in 2.5
development, it became clear that the network-
ing code had changed sufficiently to require a
major rewrite of the extraction process.

Another limitation of tcsim is that it only cov-
ers a very small part of the networking stack.
For instance, it would be interesting to use TCP



Kernel

net

tcsim

tcsim merges
code from
kernel and
user space

tc

space
User

control
Simulation

Kernel

UML

Simulation
control

space
User

support
Simulation

user space
unchanged
umlsim uses

UML

Simulator
controls a
slightly extended UML kernel

any
prog.

extracted

Figure 1: tcsim uses a monolithic approach,
with many dependencies on kernel and user
space internals. umlsim is modular, and re-
quires only very minor changes.

as a reactive traffic source.

The bottom line of the experience with tcsim is
that, while using the original source also for the
simulator works well, the process of extracting
it causes problems and confines the simulator
to only a small part of the system. So, why
not avoid the extraction step at all, and use the
entire kernel ?

This is the approach chosen for umlsim, as
shown on the right-hand side of figure 1: in-
stead of extracting the interesting bits from the
kernel, it builds on UML, where all the work of
making the Linux kernel run in user space has
already been done, and adds a few functions
for simulation control to it. User space is left
completely unchanged.

1.2 Other simulators

Particularly in the area of networking, simula-
tors are rather common tools. In many cases,
they focus only on a very limited set of func-
tions, such as a specific protocol. Among the
more general simulators, the network simula-
tor ns-2 [6] is certainly the one most widely
known.

ns-2 consists of a modular simulation core
written in C++, which is configured through
scripts written in an extended version of the Tcl
scripting language. The core provides network
elements, protocol engines, and traffic genera-
tors.

umlsim also has a “core”, but this core provides
only very low-level primitives, and higher level
functions are implemented by scripts. On the
other hand, large subsystems, such as TCP,
are simply reused without needing any special
treatment in the simulator, and they behave in
every detail like in a real system.

ns-2 is much faster than umlsim, and will prob-
ably always be, while umlsim is more general
and can also be used for simulations involving
other subsystems, instead of or in addition to
networking.

2 Simulator design

umlsim consists of a simulation control process
(we shall call it simply “the simulator”), and
the UML systems that are being studied in the
simulation. Besides UML systems, a simula-
tion can also include other processes, e.g. to
implement communication services. The gen-
eral structure of a simulation system is shown
in figure 2.
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Figure 2: The simulator controls UML systems
and other processes. Each UML system in turn
consists of several processes.

The simulator executes a script in a C/Perl-like
language. Scripts serve two purposes: (1) they
define the simulation and control its execution,
and (2) they provide the “glue” between the ac-
tual simulation and the processes used in it, and
also between elements in these processes.

A simulation can choose how closely the sim-
ulator and the UML systems interact, i.e. the
simulator may just watch a few variables and
perform basic synchronization, but exercise no
further control over execution, but it may as
well intercept even the slightest activity, ma-
nipulate variables in the UML kernel, and even
alter the flow of execution. Typically, umlsim
controls UML at a very low level, but hides
most of these interactions inside the simula-
tor and behind library functions that provide a
higher level of abstraction.

The simulator basically acts like a debugger,
and places breakpoints into the UML kernel.
When the kernel is stopped, the simulator can
read and change variables. The simulator can
also call functions, make them return, etc.

In addition to this, the simulator exchanges
time updates with the umlsim idle thread de-
scribed in the next section directly through a
pair of pipes.
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Figure 3: Organization of libraries in umlsim.

Figure 3 shows the current structure of li-
braries. Work in this area of umlsim is still very
much in progress.

2.1 Virtual time

It is frequently desirable to run simulations in a
deterministic virtual time instead of real time.
umlsim can accomplish this by adding code to
the kernel that intercepts all functions reporting
or advancing time, and puts them under its own
control. This code also introduces a umlsim-
specific idle thread that yields to all other tasks,
except the kernel’s regular idle task.

Whenever the kernel is idle (i.e. no process is
scheduled to run), the umlsim code in the ker-
nel does one of the following:



• if a soft-interrupt is pending: it generates a
timer interrupt, but does not advance time

• if a timer will expire within the next jiffy:1

it generates a timer interrupt, and allows�
��� � � 
 � �
to advance time by one jiffy

• if the next timer will expire in the future:
the UML kernel reports this back to the
simulator, and waits for further instruc-
tions

Since the kernel always runs some timers
(such as

$&� � !���� �
� � � ��� � ��� � �	
 � �
and� ��� �&�&� ����� ��	��
� � �

), umlsim does not need
to handle the case of a timeout without further
activity.

The kernel can also become active when a de-
vice interrupt arrives. umlsim currently only
handles network events. Instead of using sig-
nals (which correspond to interrupts in UML),
it calls the functions invoked by interrupt han-
dlers directly.

When all kernels in a simulation report that
they are waiting for a timer, the simulator picks
the earliest expiration time among these timers
(or a timeout specified in the 
�� � � command,
if it is earlier), sets the global simulation time
to that value, and updates the local time in all
kernels.

2.2 Running UML under a debugger

When running UML under a debugger or a
similar program (such as strace), the tracing
thread watches the debugger with

����� � ��� , inter-
cepts calls to functions like

����� � ��� and 
�� � ���
�
�
,

and emulates them or redirects them to the pro-
cess currently executing the kernel. This part
of UML is called the “

����� � ��� proxy”.

Unfortunately, this design allows only a single
UML system per debugger, because a process
can be watched with

����� � ��� by at most one pro-
cess at any given time.

In order to control multiple UML systems,
umlsim forks a forwarder process for each such
system. This process communicates with the
main simulator through pipes, and executes the����� � ��� calls on its behalf. This is shown in fig-
ure 4.

umlsim

Forwarder

Message exchange over pipes

ptrace calls from
forwarder are redirected
to process executing the
kernel

UML ptraces the forwarder to
intercept calls to ptrace,

waitpid, etc.

Tracing
thread

Processes

Figure 4: umlsim uses an intermediate for-
warder process to “debug” the UML system.

As an example, figure 5 shows a simplified
flow of control when the simulator performs a����� � ��� call on a UML system.

2.3 Debugging the kernel

There are several idiosyncrasies of kernel code
and of the way gcc compiles it that need spe-
cial attention in umlsim. This section describes
some of them.

Because the � � � ���
variable is defined in the

1. The “jiffy” is the basic time unit in the kernel. One
jiffy typically equals 1–10 ms.
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linker, the debugging information generated by
the compiler only contains its declaration, but
not its location. umlsim therefore retrieves this
information from the symbol table of the kernel
executable, and augments the declaration with
it.

Some functions use registers instead of the
stack to pass arguments (e.g. those declared
with ���������	��
�
 ). umlsim currently does not
support or even recognize this.

The kernel makes heavy use of inline func-
tions. One peculiarity of inline functions is that
breakpoints in an inline function need to be re-
peated for each instance of this function. Fur-
thermore, gcc rearranges and sometimes even
removes labels (the ones used as targets for!
�#� �

statements) when optimizing. umlsim in-
troduces a mechanism called “reliable mark-
ers” that includes an explicit label in the func-
tion, which can then be used for breakpoints.
Reliable markers also work in functions that
are not inlined, and are used as follows:

void some_function(int a)

{
int b = 10;

MARKER(label_name,a,b);
...

Variables that may be accessed by the simula-
tor when stopped at the location of the marker
are listed after the label name. This makes sure
that the variables in question have a memory
location, that they are not cached in registers
when passing the marker, and that no code ac-
cessing these variables gets moved across the
marker. (E.g. in the example above, the com-
piler might otherwise try to move the initializa-
tion of � after the marker.)

Also, since many low-level service functions
are declared

� � � � � ��� $�� � $&�
, they cannot be called

directly. umlsim generates callable instances
of the most common inline functions by in-
cluding their definitions in a file compiled with

 � ��� � � 
 �	$�� � $&� 
 ����$ ��� � ��$&�

.

2.4 Kernel changes

The kernel changes required for umlsim are
comparably minor, and most of them are in the
area specific to the UML architecture.

umlsim requires the following changes in
generic kernel code:

•
� � � � � � � � ��� �
� � ��� explicitly waits for a
timer interrupt, which would never hap-
pen under umlsim, because at that time,
the umlsim idle thread does not yet ex-
ist. Therefore, umlsim simply skips� � � � � � � � ��� �
� � ��� when using virtual time,
and sets

� �����&� � �#� � � � � � � to one.

• functions are added to
� � 
 � ��� �

to retrieve
the expiration time of the next timer.



umlsim replaces the following functions using
the linker’s 
 
 
 � � � mechanism:

•
�
��� !
����� � 
 � �#� � ��� and

!
����� �	
 ���#� � ��� return
the simulation time instead of the system’s
real time.

•
����� � � �	
 � �

becomes a no-op, because uml-
sim generates all timer interrupts under its
own control.

• a switch is added to control whether a
timer interrupt invokes

�
��� � � 
 � �
. This

way, timer interrupts can be used to
run soft-interrupts without advancing the
jiffies count.

•
� ��� � � ��� � � �

leads to the timeout handling
code of umlsim.

The timeout handling code decides which ac-
tions to take (e.g. to raise a timer interrupt
if there are pending soft-interrupts), commu-
nicates with the simulator, and maintains the
various “current time” variables.

The umlsim patches also add the reliable mark-
ers, and callable definitions of common inline
functions, which are both described in the pre-
vious section.

2.5 Network simulation

When simulating network elements, uml-
sim builds on the infrastructure used by
uml_switch, but the script intercepts the trans-
mit function and replaces most of the UML-
specific part of the stack. Figure 6 shows the
key functions invoked when sending and re-
ceiving packets.

With umlsim, the UML-specific networking
part is only used for device setup, but all the
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Figure 6: Call sequence and packet flow with
and without umlsim (simplified).

transport and low-level packet manipulation
functionality is provided directly by the sim-
ulation script.

umlsim currently only provides a single-link
model, which will be extended and generalized
in the near future. Figure 7 shows how the de-
vice interface and link are implemented. This
code can be found in the files

� $ �&�	���
����$&��� ��� 
 �
��
 � ��� 


and
� $ � � ���
����$&����� � ��� ��
 � ��� 


of the uml-
sim distribution.

When reaching the breakpoint
��
�� � $&�����

� � � � ��� 	�
 � �
, umlsim retrieves the packet, cal-

culates the queuing delay, and stores it in an
internal queue. If the device queue is full,
the script calls the flow-control function

$&��� � � �
� � ���������&� �&�

.

When the packet is due for sending, it is de-
queued and put into the link queue, from which
it emerges after the transfer delay. umlsim
then invokes basically the same functions as
the original code, and finally pushes the packet
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to the stack by calling
$&��� � � � � 	

.

3 The scripting language

The scripting language is mainly based on C
and Perl, but it also borrows concepts from the
Bourne shell, Pascal, and LISP. This section
gives a brief overview of the most important
concepts, and differences to similar languages.

umlsim passes scripts through the C preproces-
sor, so the usual comment handling, macro ca-
pabilities, and include files are available.

3.1 Variables and functions in the simulator

The names of variables in the simulator always
begin with a dollar sign, like in Perl. Also like

in Perl, variables can be used without prior dec-
laration, their value can be of any type, and the
type can be change.

An uninitialized variable has the so-called un-
defined value. The undefined value can also be
used explicitly, with the construct

��$��
���
, and

one can test whether an expression yields the
undefined value with

�
��� $&� �
expression.

The scripting language, like C, uses lexical
scoping, i.e. the visibility of a variable is de-
termined by its location in the program, but not
by the sequence of function calls that leads to
a specific access.

By default, variables are visible within the en-
closing function, but not in other functions.
This can be changed by either declaring them� � � � � , which creates a new, uninitialized in-
stance that is visible in the current block and
any blocks inside it, or by declaring them!�� � ��� �

, which creates a new instance in the cur-
rent function, which is visible also in functions
defined inside this function. Example:

$a = 5;
{

local $a = 0;

$a++;
{

$a++;
printf("inner %d\n",$a);

}
printf("middle %d\n",$a);

}
printf("outer %d\n",$a);

yields

inner 2
middle 2
outer 5



The goal of these slightly unusual scoping rules
is to avoid explicit declarations as much as pos-
sible, but also to avoid the problem of functions
accidentally altering global variables, which is
common in other scripting languages.2

Functions are anonymous, similar to lambda
expressions in LISP. In order to reference a
function by name, the function has to be stored
in a variable. Example:

global $gcd = function ($a,$b)
{

if ($a == $b) return $a;
return $a > $b ?

$gcd($a-$b,$b) : $gcd($a,$b-$a);
};

print $gcd(300,90);

The scripting language also supports associa-
tive arrays. Indices can be integers, pointers,
strings, processes, or breakpoints. Elements
can be of any type, including arrays. Exam-
ples:

$a[0] = 3;
$a["string"] = $a;
print $a["string"][0];

3.2 Printing and files

The scripting language has two output state-
ments: the C-like

� � � $����
, and the “smart” and

somewhat Perl-like
� � �	$��

.

� � � $��
accepts a list of items to print, appends a

newline after the last item, and it pretty-prints
structured types. Example:

$proc = uml("linux");
print "xtime = ",xtime;

yields

xtime = {
tv_sec = 0 (0x0)
tv_nsec = 0 (0x0)

}

� � � $��
outputs integers as decimal and as hex-

adecimal numbers, enumeration type members
by name, strings and signed character arrays as
text strings, and arrays of unsigned characters
as a hexdump. Like in Perl, a separator be-
tween printed arguments can be introduced by
setting the special variable ��� .

To send output to a file, the file first has to be
opened with the

���
� $
function, which has a file

name argument like Perl’s
� �
� $

, but returns a
file handle. Then, the file handle can be used as
the first argument of

� � �	$��
or

� � �	$����
. Example:

$file = open(">tmp");
print $file,"example data";
printf($file,"answer = %d\n",42);
close($file);

Data can be read from files with the
�"� � � func-

tion, but this is rarely used.

3.3 Control statements

� �
-
� � �'�

, 
 �
� � �
(with � �"� � � and

����$�� � $��&�
), and

� ���
work exactly like in C. There is no

�
�
- 
 �
� � �

loop, because 
 �
�	� �
can be used in its stead.3

2. Only time – and users – will tell whether this is
indeed an improvement over more traditional scoping
rules. Users preferring to declare all their variables can
set the �����	��
	��
�� ������
 option to enable warnings when
trying to access undeclared variables.

3. ����� and because the way programs are represented
internally makes 
�� - ������� � somewhat difficult to express.
It may be added at a later time.



� 
 � ��� �
-
� � �'� is similar to C, with the difference

that variable expressions can be used for case
labels.

There is no
!
�#� �

.

3.4 Processes

Simple programs are started with the function� ��$
, and UML systems are started with the

function
��
 �

. Both functions return a handle
that identifies the process. They also set the
“magic” variable � � to this value. � � always
identifies the current process, i.e. the process
that has most recently been created or stopped,
and that is currently being manipulated. � � can
be changed by the simulator (when a different
process becomes current) and by the script (if
one wants another process to be current).

� ��$
and

��
��
also support some basic IO-

redirection, e.g.
� ��$ ��� � � �	$ � � � � � � � � > � ��
 � �	 ��� ���

After
� ��$

or
��
��

, the process is in the starting
state, but not yet running. A starting or stopped
process is run with the

��� $�� � $��&�
statement.4

The 
�� � � statement is used to make the simu-
lator wait for the next event (process termina-
tion, breakpoint, timeout, etc.). If the event is
related to a process, 
�� � � sets � � to this process.
Example:

$proc =
run("/bin/echo","hello world");

continue();
wait();
print $$ == $proc;

yields5

hello world

1 (0x1)

3.5 Breakpoints, functions, and timeouts

Breakpoints can be placed at function entry,
at the point to which the current function re-
turns, at labels, and at the reliable markers de-
scribed in section 2.3. Breakpoints are set with
the � � � � � function, which returns a handle that
identifies the breakpoint.

In the example below, we set breakpoint � �	�
at the entry of the


 � �	$ function in the cur-
rent process, breakpoint � ��
 at the label or reli-
able marker

� � � � �
inside the main function, and

breakpoint � ��� at the location to which the cur-
rent function returns.

$b1 = break(main);
$b2 = break(main.label);
$b3 = break(return);

When reaching a breakpoint, umlsim sets � � to
the process in which the breakpoint is located,
and ��
 to the breakpoint handle.

When calling a function in the process, also
a breakpoint is generated. This breakpoint is
triggered when the function returns. The re-
turn value of the function is stored in the spe-
cial variable ��� . Example:

$b = call fn(1,2,3);
continue();
...

4. This 
�� ��� ���	� � has the process handle as argument,
in parentheses, and therefore differs syntactically from
the 
 � ��� ��� � � control statement. If continuing the current
process, the parentheses can be left empty.

5. After warning that ��������� � 
�� � has neither symbols
nor debugging information, so there is very little umlsim
can do with this process.



wait();
if ($! == $b)

printf("result = %d\n",$?);

This example shows an asynchronous call, be-
cause other breakpoints, timeouts, or events in
other processes can be handled before the func-
tion returns. If this flexibility is not needed,
one can use the simpler synchronous form,
which does not change ��
 or ��� . Example:

printf("result = %d\n",fn(1,2,3));

Breakpoints can be removed implicitly, by de-
stroying all references to them, or explicitly
with

�
� � ��� � �
breakpoint

���

A script can not only call functions in a pro-
cess, but it can also make a function return.
For example, � � � $&��� ��� 
 � ����� � ����$���� � � $���� � �
in figure 7 forces

��
 � � $&����� � � � � ��� 	�
 � �
to re-

turn, without executing any code of that func-
tion, with � � �%� ������� $�� �

.

Besides terminating or reaching a breakpoint,
a process may also stop with a timeout. Time-
outs are specified with a time argument to
�� � � . When the specified absolute time is
reached, 
�� � � sets � � to the undefined value,
and the “current time” variable ��� to the time-
out, rounded up to the next nanosecond. Ex-
ample:

wait(10.2);
/* wait until t = 10.2 seconds */

if (!defined $$) print $@;

If more than one timeout can occur at a given
time (e.g. packets arriving within the same
nanosecond at different points in the simula-
tion), 
 � � � � ��� � must be called after handling
each event, so that breakpoints reached when

handling a timeout can be processed before
handling further timeouts. An example for us-
ing 
 � � � � ��� � can be found in the event loop at
the end of

� $ � � ���
����$&��� ���	
�� ��
 � ��� 

in the uml-

sim distribution.

Starting
$$ = process
$! = undef

Running

Terminated

after function return

exit or signal

$? = exit status
$$ = process

Stopped Timeout

function return
breakpoint or

umlsim_idle

continue() or wait() wait()

$! = breakpoint
$$ = process

$$ = undef
$? = return value

(if function)

continue()
function call

Figure 8: User-visible process states. “Func-
tion call’ and “return” refer to asynchronous
function calls.

Figure 8 summarizes the process states de-
scribed in this section. States shown in grey
allow manipulations of the process, such as
the creation of new breakpoints, access to vari-
ables, or function calls. A function call from
timeout puts the process in a state equivalent to
stopped, but it does not affect any of the special
variables.

3.6 Data in a process

umlsim scripts can directly read and write vari-
ables in a process, follow pointers, select struct
or union members, and so on.

The basic operation is to access a variable. In



many cases, simply specifying the variable’s
name is enough, e.g. given the example pro-
gram below,

� ���
retrieves the value 42.

static int foo = 42;

int main(void)
{

static int bar = 5;

MARKER(stop_here,bar);
return bar;

}

Accessing ��� � is more complicated. If the pro-
gram has not been started yet, umlsim looks for
variables only in the global scope. To access a
variable local to a function, it has to be quali-
fied with the function name, i.e.


 � � $�� ��� � .
If the program is stopped at the label
 � �	$�� � � ����� �&� � �

, umlsim searches the local
scope first, so just ��� � is sufficient.

Variables, functions, and labels can also be
qualified with the process and the compilation
unit. Compilation units are in double quotes.
Examples:

$b1 = break($proc.main);
$b2 = break("fs/ext2/super.c".

parse_options);
"drivers/net/tun.c".debug = 1;
"tun.c".debug = 0;

Since distinct processes may use the same
name for different types, also struct or
union tags can be qualified, e.g.

� ��� � ���
� � �"� ��� � � ��� � � � � .

Type definitions with
� � �
� �#���

differ from C
in that umlsim cannot usefully distinguish at
parse time between typedef names and other

identifiers. Therefore, typedef names are al-
ways prefixed with the keyword

� � �#� �
���
, e.g.� � �
� �
��� ��� � � � � ��� � �

. Like all other names,
they can be qualified. For convenience, the
C99 standard integer types

�
�	$�� � 
 � �
,

�	$���� � �
,

etc. are predefined.

Conflicts between C identifiers and keywords
of the scripting language (e.g.

� � �	$����
) can be

resolved by escaping the word with a backslash
when the C identifier is meant, e.g. \

� � �	$����
.

A peculiarity in the way umlsim handles data
are array copies: when accessing an object of
array type, the entire array is copied. To obtain
a pointer to the array, the � operator must be
used. Example:

C program fragment:

int a[10];
int b[10];

umlsim script:

$array = a;
b = a; /* memcpy equivalent */
$ptr = &a;

This can also be used in type casts. E.g. the
following construct copies the content of a net-
work packet:

$pkt = (unsigned char [skb->len])
skb->data;

4 Simulation example

In this section, we use umlsim to demonstrate
a bug in Linux TCP, and to show the effect of a



possible fix. The problem in question, which
was first observed on a simulator by Cheng
Jin, is that Linux TCP6 decreases the conges-
tion window (cwnd, TCP’s estimate of how
many packets can be “in flight” for a given con-
nection) too much if there are multiple packet
losses in a single round-trip time.

When a packet is lost, TCP assumes that this
was due to congestion, and reduces cwnd by
half. However, if multiple losses occur within
a single round-trip time, they should be treated
only like a single loss. Linux TCP does not
do this, and may reduce cwnd to as low as a
quarter of the original value. This causes TCP
to send data a little slower than it would be al-
lowed to.

Sender Receiver

20 packets/s

���������	��

��������������� ���

5 packets

560 kbps
1500 bytes MTU

packet rate)
Policer (limits

Figure 9: Network setup used in the simula-
tion.

Figure 9 shows the network configuration used
in the simulation: the TCP sender and receiver
are connected by a single link with a round-trip
time of one second. The maximum through-
put is rate-limited to twenty packets per sec-
ond. We simulate the transfer of a 1 MB file.

The left-hand side of figure 10 shows the
transfer with an unchanged 2.5.66 kernel.��$���� � 
 $��

is the congestion window, in seg-
ments.

��$���� ��������� � ���
marks the point where

TCP switches between “slow start” and “con-
gestion avoidance” mode.

��$���� � 
 $��
should

not fall below
��$���� ��������� � ���

.
��$���� ��$ � is the

number of bytes that have been acknowledged

by the receiver.
� � � ����� � � �#���

is the cumulative
number of packets dropped by the rate limiter.

For the second simulation, we use the same
kernel, but set a breakpoint at the beginning of��� ��� � 
 $���� �
� 
 $

, and execute a replacement
in the script instead of the original function.
This replacement implements a fix that keeps
cwnd from being lowered too far.

With this work-around in place,
��$���� � 
 $��

never falls below
��$���� ��������� � ���

, and the trans-
fer finishes considerably earlier than in the
buggy version.

5 Future work

As a complex but relatively young project,
umlsim still has shortcomings in many areas.
This section discusses some of the problems,
and outlines approaches for solving them.

Future work on umlsim will primarily focus on
the needs of network simulations, and in par-
ticular the analysis of TCP performance.

5.1 Functionality

Networking simulations are essentially limited
to a single-link scenario at the time of writ-
ing. Work is under way for providing building
blocks that allow the construction of arbitrary
network topologies.

Another issue all but ignored so far is porta-
bility to architectures with other byte order or
word size than ia32. Also support for multipro-
cessing is absent so far.

6. Most if not all 2.4 and 2.5 kernels are affected. At
the time of writing, this bug still exists in the mainstream
kernel. The entire discussion can be found at [7].
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Figure 10: Simulated transfer with and without the “cwnd quarter” bug.

The simulator has currently no direct control
over processes running in the user space under
a UML kernel. It would be useful if simula-
tions could treat such processes like ordinary
processes, i.e. by launching them with a sim-
ple command, by placing breakpoints, etc.

It would be interesting to explore the possi-
bility of using umlsim to reconstruct the in-
ternal state of the kernel, based on traces ob-
tained from “live” systems. For example, this
could be used to explain anomalies in network
activity captured with tcpdump. The open is-
sue here is how quickly unavoidable time dif-
ferences and events not recorded in the trace
(such as soft-interrupt execution after a hard-
ware interrupt) will cause the simulation to di-
verge from the original system, and how such
errors can be compensated.

5.2 Usability

umlsim today is clearly a hacker’s toy. Most
users will want high-level components when
implementing their simulations, and the script-
ing language could also use some minor
cleanup.

Dark corners of the language include the cast
operator, pointers to data in the simulator, in-
consistencies in the syntax (e.g. normally,
� � �

thing is equivalent to just thing, but
� ������� $

is
very different from � � � �"������� $

), and subtle dif-
ferences in the semantics of array indices and� � ��� expressions.

To be useful outside the kernel hacker commu-
nity, umlsim needs libraries with application-
oriented building blocks that provide a conve-
nient level of abstraction. At the time of writ-
ing, such a library is slowly emerging for net-
working, with the main focus on TCP.

Beyond libraries, also preprocessors that trans-
late simpler application-oriented languages,
like the one used by tcsim, to umlsim may be
useful.

One of the most important aspects of simula-
tions is the visualization of results. While it
is desirable to retain a maximum of flexibil-
ity, examples for data formats, and visualiza-
tion packages for common tasks will help users
to obtain results more rapidly.

Also, as befits a hacker’s toy, documentation is
incoherent and spotty.



5.3 Performance

At the time of writing, umlsim is rather slow.
While some optimization work has been done
to reduce startup time and to accelerate some
lookup operations, and more recently also
to accelerate the communication between the
simulator and the UML processes, several ar-
eas remain where major speed improvement
are possible.

����� � ��� is a rather inefficient means for access-
ing process memory. It would be better if the
simulator entirely bypassed the tracing thread
when reading or changing variables, and ac-
cessed the address space of the UML processes
directly.

Also the performance of UML itself is the
object of on-going work [8]. In particular,
the so-called “skas mode” (“skas” stands for
“Separate Kernel Address Space”) has been
added recently, to accelerate context switches
of processes under UML [9]. By following
these changes, umlsim will permit UML to run
faster, which in turn will benefit overall system
performance, and may perhaps also itself be
able to access UML systems more efficiently.

Last but not least, several algorithms and data
structures inside the simulator are rather ineffi-
cient, and will have to be improved for larger
simulations. For example, associative arrays
just store their elements in a linear list. Also,
results of identifier lookups could be cached.

6 Conclusion

umlsim provides the infrastructure for turning
the (UML) Linux kernel into a versatile event-
driven simulator, that can be customized using

a scripting language most programmers will
find easy to learn.

The next challenges in the project will be to
bring performance closer to that of compara-
ble simulators, to improve overall usability, to
apply umlsim to concrete problems, and to use
experience gained from such real-life applica-
tions to further improve the simulator.
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